DOI QR코드

DOI QR Code

Influence of Deposition Pressure on Structural and Optical Properties of SnS Thin Films Grown by RF Magnetron Sputtering

RF 마그네트론 스퍼터링법으로 성장 된 SnS 박막의 구조적 및 광학적 특성에 대한 증착 압력의 영향

  • Son, Seung-Ik (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Sang Woon (School of Materials Science and Engineering, Pusan National University) ;
  • Son, Chang Sik (Division of Materials Science and Engineering, Silla University) ;
  • Hwang, Donghyun (Division of Materials Science and Engineering, Silla University)
  • 손승익 (재료공학과, 부산대학교) ;
  • 이상운 (재료공학과, 부산대학교) ;
  • 손창식 (신소재공학부, 신라대학교) ;
  • 황동현 (신소재공학부, 신라대학교)
  • Received : 2020.01.15
  • Accepted : 2020.02.07
  • Published : 2020.03.31

Abstract

Single-phased SnS thin films have been prepared by RF magnetron sputtering at various deposition pressures. The effect of deposition pressure on the structural and optical properties of polycrystalline SnS thin films was studied using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible-near infrared (UV-Vis-NIR) spectrophotometer. The XRD analysis revealed the orthorhombic structure of the SnS thin films oriented along the (111) plane direction. As the deposition pressure was increased from 5 mTorr to 15 mTorr, the intensity of the peak on the (111) plane increased, and the intensity decreased under the condition of 20 mTorr. The binding energy difference at the Sn 3d5/2 and S 2p3/2 core levels was about 324.5 eV, indicating that the SnS thin film was prepared as a pure Sn-S phase. The optical properties of the SnS thin films indicate the presence of direct allowed transitions with corresponding energy band gap in the rang 1.47-1.57 eV.

Keywords

References

  1. Green, M. A., Hishikawa, Y., Dunlop, E. D., Levi, D. H., Hohl-Ebinger, J., Ho-Baillie, A. W. Y., "Solar cell efficiency tables (version 52)", Prog. Photovolt., Vol. 26, pp. 427-436, 2018. https://doi.org/10.1002/pip.3040
  2. Ramakrishna Reddy, K. T., Koteswara Reddy, N., Miles, R. W., "Photovoltaic properties of SnS based solar cells", Sol. Energy Mater. Sol. Cells, Vol. 90, pp. 3041-3046, 2006. https://doi.org/10.1016/j.solmat.2006.06.012
  3. Andrade-Arvizu, J. A., Courel-Piedrahita, M., Vigil-Galan, O., "SnS-based thin film solar cells: perspectives over the last 25 years", J. Mater. Sci.: Mater. Electron., Vol. 26, pp. 4541-4556, 2015. https://doi.org/10.1007/s10854-015-3050-z
  4. Minnam Reddy, V. R., Gedi, S., Park, C., Miles, R. W., Ramakrishna, R. R., "Development of sulphurized SnS thin film solar cells", Curr. Appl. Phys., Vol. 5, pp. 588-598, 2015. https://doi.org/10.1016/j.cap.2004.08.001
  5. Koteeswara Reddy, N., Devika, M., Gopal, E. S. R., "Review on Tin (II) Sulfide (SnS) Material: Synthesis, Properties, and Applications", Crit. Rev. Solid State Mater. Sci., Vol. 40, pp. 359-398, 2015. https://doi.org/10.1080/10408436.2015.1053601
  6. Ruhle, S., "Tabulated values of the shockley -Queisser limit for single junction solar cells", Sol. Energy, Vol. 130, pp. 139-147, 2016. https://doi.org/10.1016/j.solener.2016.02.015
  7. Lambros, A. P., Geraleas, D., Economou, N. A., "Optical absorption edge in SnS", J. Phys. Chem. Solids, Vol. 35, pp. 537-541, 1974. https://doi.org/10.1016/S0022-3697(74)80008-9
  8. Burton, L. A., Colombara, D., Abellon, R. D., Grozema, F. C., Peter, L. M., Savenije, T. J., Dennler, G., Walsh, A., "Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2", Chem. Mater., Vol. 25, pp. 4908-4916, 2013. https://doi.org/10.1021/cm403046m
  9. Sinsermsuksakul, P., Sun, L., Lee, S. W., Park, H. H., Kim, S. B., Yang, C., Gordon, R. G., "Overcoming Efficiency Limitations of SnS-Based Solar Cells", Adv. Energy Mater., Vol. 4, p. 1400496, 2014. https://doi.org/10.1002/aenm.201400496
  10. Steinmann, V., Jaramillo, R., Hartman, K., Chakraborty, R., Brandt, R. E., Poindexter, J. R., Lee, Y. S., Sun, L., Polizzotti, A., Park, H. H., Gordon, R. G., Buonassisi, T., "3.88% efficient tin sulfide solar cells using congruent thermal evaporation", Adv. Mater., Vol. 26, pp. 7488-7492, 2014. https://doi.org/10.1002/adma.201402219
  11. Banai, R. E., Lee, H., Motyka, M. A., Chandrasekharan, R., Podraza, N. J., Brownson, J. R. S., Horn, M. W., "Optical properties of sputtered SnS thin films for photovoltaic absorbers", IEEE J. Photovolt., Vol. 3, pp. 1084-1089, 2013. https://doi.org/10.1109/JPHOTOV.2013.2251758
  12. Sousa, M. G., Da Cunha, A. F., Fernandes, P. A., "Annealing of RF-magnetron sputtered SnS2 precursors as a new route for single phase SnS thin films", J. Alloys Compd., Vol. 592, pp. 80-85, 2014. https://doi.org/10.1016/j.jallcom.2013.12.200
  13. Banai, R. E., Lee, H., Zlotnikov, S., Brownson, J. R. S., Horn, M. W., "Phase identification of RF-sputtered SnS thin films using rietveld analysis of X-ray diffraction patterns", 39th IEEE Photovoltaic Specialists Conference, 2562-2566, 2013.
  14. Malaquias, J., Fernandes, P. A., Salome, P. M. P., Da Cunha, A. F., "Assessment of the potential of tin sulphide thin films prepared by sulphurization of metallic precursors as cell absorbers", Thin Solid Films, Vol. 519, pp. 7416-7420, 2011. https://doi.org/10.1016/j.tsf.2011.01.393
  15. Zhao, L. B., Di, Y. X., Yan, C., Liu, F. Y., Cheng, Z., Jiang, L. X., Hao, X. J., Lai, Y. Q., Li, J., "In situ growth of SnS absorbing layer by reactive sputtering for thin film solar cells", Rsc Adv., Vol. 6, pp. 4108-4115, 2016. https://doi.org/10.1039/C5RA24144H
  16. Arepalli, V. K., Kim, J., "Effect of substrate temperature on the structural and optical properties of radio frequency sputtered tin sulfide thin films for solar cell application", Thin Solid Films, Vol. 666, pp. 34-39, 2018. https://doi.org/10.1016/j.tsf.2018.09.009
  17. Arepalli, V. K., Shin, Y., Kim, J., "Photovoltaic behavior of the room temperature grown RF-Sputtered SnS thin films", Opt. Mater., Vol. 88, pp. 594-600, 2019. https://doi.org/10.1016/j.optmat.2018.12.016
  18. Hwang, D., "Structural and Optical Properties of SnS Thin Films Deposited by RF Magnetron Sputtering", Journal of the Korean institute of surface engineering, Vol. 51, pp. 126-132, 2018. https://doi.org/10.5695/JKISE.2018.51.2.126
  19. Lokhande, A. C., Chalapathy, R. B. V., He, M., Jo, E., Gang, M., Pawar, S. A., Lokhande, C. D., Kim, J. H., "Development of Cu2SnS3 (CTS) thin film solar cells by physical techniques: A status review", Sol. Energ. Mat. Sol. C., Vol. 153, pp. 84-107, 2016. https://doi.org/10.1016/j.solmat.2016.04.003
  20. Suryawanshi, M. P., Agawane, G. L., Bhosale, S. M., Shin, S. W., Patil, P. S., Kim, J. H., Moholkar, A. V., "CZTS based thin film solar cells: a status review", Mater. Technol., Vol. 28, pp. 98-109, 2013. https://doi.org/10.1179/1753555712Y.0000000038
  21. Zhang, H. X., Hong, R. J., "CIGS absorbing layers prepared by RF magnetron sputtering from a single quaternary target", Ceram. Int., Vol. 42, pp. 14543-14547, 2016. https://doi.org/10.1016/j.ceramint.2016.06.067
  22. Reddy, T. S., Kumar, M. C. S., "Co-evaporated SnS thin films for visible light photodetector applications", Rsc Adv., Vol. 6, pp. 95680-95692, 2016. https://doi.org/10.1039/C6RA20129F
  23. Hartman, K., Johnson, J. L., Bertoni, M. I., Recht, D., Aziz, M. J., Scarpulla, M. A., Buonassisi, T., "SnS thin-films by RF sputtering at room temperature", Thin Solid Films, Vol. 519, pp. 7421-7424, 2011. https://doi.org/10.1016/j.tsf.2010.12.186
  24. Gao, C., Shen, H. L., Sun, L., Huang, H. B., Lu, L. F., Cai, H., "Preparation of SnS films with zinc blende structure by successive ionic layer adsorption and reaction method", Mater. Lett., Vol. 64, pp. 2177-2179, 2010. https://doi.org/10.1016/j.matlet.2010.07.002
  25. Huang, C. C., Lin, Y. J., Chuang, C. Y., Liu, C. J., Yang, Y. W., "Conduction-type control of SnSx films prepared by the sol-gel method for different sulfur contents", J. Alloy Compd., Vol. 553, pp. 208-211, 2013. https://doi.org/10.1016/j.jallcom.2012.11.134
  26. Chen, D., Shen, G. Z., Tang, K. B., Lei, S. J., Zheng, H. G., Qian, Y. T., "Microwave-assisted polyol synthesis of nanoscale SnSx(x=1,2) flakes", J. Cryst. Growth, Vol. 260, pp. 469-474, 2004. https://doi.org/10.1016/j.jcrysgro.2003.09.009
  27. Kawano, K., Nakata, R., Sumita, M., "Effects of Substrate-Temperature on Absorption-Edge and Photocurrent in Evaporated Amorphous SnS2 Films", J. Phys. D. Appl. Phys., Vol. 22, pp. 136-141, 1989. https://doi.org/10.1088/0022-3727/22/1/019
  28. Sinsermsuksakul, P., Heo, J., Noh, W., Hock, A. S., Gordon, R. G., "Atomic Layer Deposition of Tin Monosulfide Thin Films", Adv. Energy Mater., Vol. 1, pp. 1116-1125, 2011. https://doi.org/10.1002/aenm.201100330