DOI QR코드

DOI QR Code

표면 조도를 고려한 난류 천이 모델의 항공기 결빙 해석자에 대한 적용 연구

Implementation of Roughness-Induced Turbulent Transition Model on Inflight Icing Code

  • Min, Seungin (Department of Mechanical Aerospace Engineering, Seoul National University) ;
  • Yee, Kwanjung (Department of Mechanical Aerospace Engineering, Seoul National University)
  • 투고 : 2019.11.18
  • 심사 : 2019.12.17
  • 발행 : 2020.01.01

초록

본 연구에서는 표면 조도 분포가 항공기 결빙 수치 해석에 미치는 영향성에 대한 연구를 수행하였다. 기존의 항공기 결빙 해석 연구에서는 표면 조도의 크기에 초점이 맞춰져 있었으며, 표면조도의 효과 측면에서는 완전 난류 가정을 적용하여 난류 천이를 고려하지 못하고 있다. 또한 일부 연구에서, 표면 조도가 천이 과정에 미치는 영향이 선험적인 수식으로 나타났으나, 이러한 기법은 항공기 결빙 해석의 정확도를 낮추는 요인으로 여겨졌다. 따라서 본 연구에서는 표면 조도가 난류천이 및 열 경계층에 미치는 영향을 모두 고려할 수 있도록, 2-방정식 난류 모델을 기반으로 하는 난류 천이 모델을 적용하였다. 표면 조도의 효과를 고려할 수 있도록 표면 조도 증폭 파라미터를 수송 방정식 형태로 적용하였으며, 물리적인 특성을 고려하기 위해서 표면 조도 분포 모델을 적용하였다. 이를 검증하기 위하여 2차원 익형의 표면 조도, 대류 열전달 계수 및 결빙 형상을 획득하였으며, 실험 결과와 기존 기법들을 사용한 수치 해석 연구결과를 비교하였다. 그 결과, 앞전에서의 열전달 계수의 과도한 예측과 그에 따른 익형 아랫면에서의 얼음뿔 형상이 개선되는 것을 확인할 수 있었다.

In this study, the effect of surface roughness distribution and its influence on the inflight icing code was investigated. Previous numerical studies focused on the magnitude of surface roughness, and the effects were only addressed in terms of changes in thermal boundary layers with fully turbulent assumption. In addition, the empirical formula was used to take account the turbulent transition due to surface roughness, which was regarded as reducing the accuracy of ice shape prediction. Therefore, in this study, the turbulent transition model based on the two-equation turbulence model was applied to consider the effects of surface roughness. In order to consider the effect of surface roughness, the transport equation for roughness amplification parameter was applied, and the surface roughness distribution model was implemented to consider the physical properties. For validation, the surface roughness, convective heat transfer coefficient, and ice shape were compared with experimental results and other numerical methodology. As a result, it was confirmed that the excessive prediction of the heat transfer coefficient at the leading edge and the ice horn shape at the bottom of the airfoil were improved accordingly.

키워드

참고문헌

  1. Ruff, G. A., and Berkowitz, B. M., "Users manual for the NASA Lewis ice accretion prediction code(LEWICE)," NASA/CR-185129, May 1990.
  2. Wright, W., "Advancements in the LEWICE Ice Accretion Model," NASA CR-191019, Feb, 1993.
  3. Poinsatte, P. E., Fossen, G. V., Newton, J. E., and DeWitt, K. J., "Heat Transfer Measurements from a Smooth NACA0012 Airfoil," Journal of Aircraft, Vol. 28, No. 12, 1991, pp. 892-898. https://doi.org/10.2514/3.46114
  4. Poinsatte, P. E., Fossen, G. V., and DeWitt, K. J., "Roughness effects on heat transfer from a NACA0012 airfoil," Journal of Aircraft, Vol. 28, No. 12, 1991, pp. 908-911. https://doi.org/10.2514/3.46116
  5. Yamaguchi, K., and Hansman, R. J., "Heat Tranfer on Accreting Ice Surfaces," Journal of Aircraft, Vol. 29, No. 1, 1992, pp. 108-113. https://doi.org/10.2514/3.46132
  6. Henry, R. C., Hansman, R. J., and Breuer, K. S., "Heat Transfer Variation on Protuberances and Surface Roughness Elements," Journal of Thermophysics and Heat Transfer, Vol. 9, No. 1, 1995, pp. 175-180. https://doi.org/10.2514/3.644
  7. Han, Y., and Palacios, J., "Transient Heat Transfer Measurements of Surface Roughness Due to Ice Accretion," 6th AIAA Atmospheric and Space Environments Conference, June 2014, p. 2464.
  8. Gent, R., Markiewicz, R., and Cansdale, J., "Further studies of helicopter rotor ice accretion and protection," Vertica, Vol. 11, 1987, pp. 473-492.
  9. Anderson, D., Hentschel, D., and Ruff, G., "Measurement and Correlation of Ice Accretion Roughness," NASA CR-2003-211823, June 2003.
  10. Shin, J., "Characteristics of Surface Roughness Associated with Leading Edge Ice Accretion," NASA TM-106459, January 1994.
  11. Fortin, G., Ilinca, A., Laforte, J.-L., and Brandi, V., "New Roughness Computation Method and Geometric Accretion Model for Airfoil Icing," Journal of Aircraft, Vol. 41, No. 1, 2004, pp. 119- 127. https://doi.org/10.2514/1.173
  12. Langel, C. M., Chow, R., Van Dam, C. C. P., Rumsey, M. A., Maniaci, D. C., Ehrmann, R. S., and White, E. B., "A computational approach to simulating the effects of realistic surface roughness on boundary layer transition," 52nd Aerospace Sciences Meeting, June 2014, p. 234.
  13. Min, S., Son, C., and Yee, K., "Application of the Physical Surface Roughness Model for Aircraft Icing Code," Journal of Computational Fluids Engineering, Vol. 23, No. 2, pp. 32-43. https://doi.org/10.6112/kscfe.2018.23.2.032
  14. Son, C., Oh, S., and Yee, K., "Development of 2nd Generation Ice Accretion Analysis Program for Handling Genera l3-D Geometries," Journal of Computational Fluids Engineering, Vol. 20, No. 2, 2015, pp. 23-36. https://doi.org/10.6112/kscfe.2015.20.2.023
  15. Spalart, P. R., and Aupoix, B., "Extensions of the Spalart-Allmaras Turbulence Model to Account for Wall Roughness," International Journal of Heat and Fluid Flow, Vol. 24, No. 4, 2001, pp. 454-462. https://doi.org/10.1016/S0142-727X(03)00043-2
  16. Menter, F. R., Langtry, R., and Volker, S., "Transition Modelling for General Purpose CFD Codes," Flow, Turbulence and Combustion, Vol. 77, No. 1-4, 2006, pp. 277-303. https://doi.org/10.1007/s10494-006-9047-1
  17. Beaugendre, H., Morency, F., and Habashi, W. G., "FENSAP-ICE's Three-Dimensional In-flight Ice Accretion Module: ICE3D," Journal of Aircraft, Vol. 40, No. 2, 2003, pp. 239-247. https://doi.org/10.2514/2.3113
  18. Menter, F. R., "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," AIAA Journal, Vol. 32, No. 8, 1994, pp. 1598-1605. https://doi.org/10.2514/3.12149
  19. Aupoix, B., "Wall Roughness Modelling with k-w SST Model," 10th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements, September 2014.
  20. Colebrook, C. F., and White, C. M., "Experiments with Fluid Friction in Roughened Pipes," Proceedings of the Royal Society of London A, Vol. 161, 1937, pp. 367-381. https://doi.org/10.1098/rspa.1937.0150
  21. Hansman, R. J., and Turnock, S., "Investigation of Surface Water Behavior during Glaze Ice Accretion," AIAA Journal, Vol. 26, No. 2, 1989, pp. 140-147.
  22. Kerho, M. F., and Bragg, M. B., "Airfoil Boundary-Layer Development and Transition with Large Leading-Edge Roughness," AIAA Journal, Vol. 35, No. 1, 1997, pp. 75-84. https://doi.org/10.2514/2.65
  23. Thompson, B. G. J., A critical review of existing methods of calculating the turbulent boundary layer, HM Stationery Office, 1967.
  24. Wright, W. B., and Rutkowski, A., "Validation Results for LEWICE 2.0," NASA/CR-1999-208690, January 1999.