DOI QR코드

DOI QR Code

경량 기포콘크리트를 이용한 광물탄산화 연구

Study on the Mineral Carbonation from Autoclaved Lightweight Concrete (ALC)

  • 투고 : 2020.12.17
  • 심사 : 2020.12.30
  • 발행 : 2020.12.31

초록

온실가스의 대기 방출에 기인된 지구온난화는 범세계적인 주요 문제로 다루어지고 있으며, 이에 대한 많은 대책 중의 하나로 광물탄산화가 관심을 받고 있다. 본 연구에서는 다양한 조건에서 경량 기포콘크리트를 이용한 광물탄산화 실험을 수행하여 이들의 탄산화 재료로써의 가능성을 파악코자 하였다. 경량 기포콘크리트는 광물탄산화의 주요성분인 CaO의 함량이 약 27 wt.%에 달하여 탄산화를 위한 유망한 재료로 간주할 수 있다. 이 함량 모두가 광물탄산화에 참여한다는 가정 하에 계산된 CaCO3 함량은 약 40 wt.%이다. 경량 기포콘크리트로부터 광물탄산화 반응의 최적 조건은 단일상의 방해석이 형성된 고액비 0.01, 반응시간 180분이며, 그리고 단일상 여부와 무관하게 즉 방해석과 바테라이트가 공존하는 경우, 고액비 0.06, 반응시간 180분인 것으로 확인된다. 고액비 0.06이상인 경우, 방해석과 더불어 바테라이트가 공존하였으며, 이는 광물탄산화에 따라 초기에 형성된 바테라이트가 점차 방해석으로 상전이 된 데 반하여 후기에 형성된 바테라이트는 반응 종료 시까지 방해석으로 상전이 되지 못한데 원인이 있는 것으로 해석된다.

Global warming caused by the emission of greenhouse gases into the atmosphere is being treated as a major problem for the human life, and mineral carbonation is drawing attention as one of many countermeasures against this situation. In this study, mineral carbonation experiments using autoclaved lightweight concrete (ALC) were performed under various conditions to determine its potential as a carbonation material. ALC can be regarded as a promising material for carbonation because it contains about 27 wt.% of CaO, a major component of mineral carbonation. The CaCO3 content produced as a result of the carbonation of ALC calculated on the assumption that all of the CaO content participates in mineral carbonation is about 40 wt.%. The optimum conditions for the mineral carbonation reaction from ALC are the solid-liquid ratio of 0.01 and the reaction time of 180 minutes when calcite is considered as a single product, or 0.06 and 180 minutes when mixture of calcite and vaterite can be considered. The coexistence of vaterite with calcite at solid-liquid ratio of 0.06 or higher was interpreted to be the case where vaterite formed in the later stage and did not change to calcite until the reaction was completed.

키워드

참고문헌

  1. Alexander, G., Maroto-Valer, M.M., Gafarova-Aksoy, P., 2007, Evaluation of reaction variables in the dissolution of serpentine for mineral carbonation. Fuel, 86, 273-281. https://doi.org/10.1016/j.fuel.2006.04.034
  2. Ayub, S.A., Tsegab, H., Rahmani, O., Pour, A.B., 2020, Potential for CO2 Mineral Carbonation in the Paleogene Segamat Basalt of Malaysia. Minerals, 10, 1045; doi: 10.3390/min10121045
  3. Bergmans, J., Nielsen, P., Snellings, R., Broos, K., 2016. Recycling of autoclaved aerated concrete in floor screeds: sulfate leaching reduction by ettringite formation. Construction and Building Materials, 111, 9-14. https://doi.org/10.1016/j.conbuildmat.2016.02.075.
  4. Bonakdar, A. Babbitt, F., Mobasher, B., 2013, Physical and mechanical characterization of fiber-reinforced aerated concrete (FRAC). Cement and Concrete Composites, 38, 82-91. https://doi.org/10.1016/j.cemconcomp.2013.03.006
  5. Bots, P., Benning, L.G., Rodriguez-Blanco, J.-D., Roncal-Herrero, T., Shaw, S., 2012, Mechanistic Insights into the Crystallization of Amorphous Calcium Carbonate (ACC). Crystal Growth & Design, 12, 3806-3814. https://doi.org/10.1021/cg300676b
  6. Chae, S.C., Jang, Y.N., Ryu, K.W., 2009, Mineral Carbonation as a sequestration method of CO2 : Review. Journal of the Geological Society of Korea, 45, 527-555.
  7. Cwik, A., Casanova, I., Rausis, K., Koukouzas, N., Zarebska, K., 2018, Carbonation of high-calciumfly ashes and its potential for carbon dioxide removal in coal fired power plant. Journal of Cleaner Production, 202, 1026-1034. https://doi.org/10.1016/j.jclepro.2018.08.234
  8. Dunsmore, H.E., 1992, A geological perspective on global warming and the possibility of carbon dioxide removal as calcium carbonate mineral. Energy Conversion and management, 33, 565-572. https://doi.org/10.1016/0196-8904(92)90057-4
  9. Geerlings, J.J.C., Wesker, E., 2007, A process for sequestration of carbon dioxide by mineral carbonation. Patent, PCT/EP2006/068691, 31.05.2007.
  10. Goff, F., Lackner, K.S., 1998, Carbon dioxide sequestering using ultramafic rocks. Environmental Geosciences, 5, 89-101. https://doi.org/10.1046/j.1526-0984.1998.08014.x
  11. Heddle, M.F., 1880, Preliminary notice of substances which may prove to be new minerals. Mineral. Magazine, 4, 117-123. http://alc153.com/ALCservice/alc.php https://doi.org/10.1180/minmag.1880.004.18.04
  12. http://alc153.com/ALCservice/alc.php
  13. Huijgen, W.J.J., Witkamp, G., Comans, R.N.J., 2006, Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chemical Engineering Science, 61, 4242-4251. https://doi.org/10.1016/j.ces.2006.01.048
  14. IPCC, 2005, Special Report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [in: Metz, B., Davidson, O., de Coninck, H., Loos, M., Meyer, L. (Eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442p.
  15. Jang, Y.N., Chae, Y.B., Chae, S.C., Jung, S.B., Kim, H.S., Ji, S.J., Lee, M.J., Rhyu, K.W., 2008, Planning and research to establish the foundation of mineral carbonation technology. JP2008-026, Korea Institute of Geoscience and Resources, 84 p.
  16. Karakurt, C., Kurama, H., Topcu, I.B., 2010, Utilization of natural zeolite in aerated concrete production. Cement and Concrete Composites, 32, 1, 1-8. https://doi.org/10.1016/j.cemconcomp.2009.10.002
  17. Kavaliauskaite, I., Denafas, G., 2006, Carbonization of natural resources - as an option for carbon dioxide storage in Lithuania. 8th International Conference on Greenhouse Gas Control Technologies, 19-22 June, Trondheim, Norway, (Paper P02_01_11).
  18. Kim, K.S., Baek, S..H., Chung, S.S., 2012, ALC(Autoclaved Lightweight Concrete) Hardness Prediction by Multiple Regression Analysis. Asia-Pacific Journal of Business Venturing and Entrepreneurship, 7, 101-111. https://doi.org/10.16972/apjbve.7.2.201207.101
  19. Lackner, K.S., Butt, D.P., Wendt, C.H., 1997, Progress on binding CO2 in mineral substrates. Energy Conversion and Management, 38, 259-264.
  20. Lackner, K.S., Wendt, C.H., Butt, D.P., Joyce, E.L., Sharp, D.H., 1995, Carbon dioxide disposal in carbonate minerals. Energy, 20, 1153-1170. https://doi.org/10.1016/0360-5442(95)00071-N
  21. Li, C., Botsaris, G.D., Kaplan, D.L., 2002, Selective in vitro effect of peptides on calcium carbonate crystallization. Crystal Growth & Design, 2, 387-393. https://doi.org/10.1021/cg0255467
  22. Liu, Y., Leong, B.S., Hu, Zong-Ting, Yang, En-Hus, 2017, Autoclaved aerated concrete incorporating waste aluminum dust as foaming agent. Construction and Building Materials, 148, 140-147. https://doi.org/10.1016/j.conbuildmat.2017.05.047
  23. Lorenzo, F.D., Ruiz-Agudo, C., Ibanez-Velasco, A., Millan, R.G., Navarro, J.A.R., Ruiz-Agudo, E., Rodriguez-Navarro, C., 2018, The Carbonation of Wollastonite: A Model Reaction to Test Natural and Biomimetic Catalysts for Enhanced CO2 Sequestration. Minerals, 8, 209; doi:10.3390/min8050209.
  24. Merlino, S., Bonaccorsi, E. and Armbruster, T., 2001, The real structure of tobermorite 11Å: normal and anomalous forms, OD character and polytypic modifications. European Journal of Mineraloly, 13, 577-590. https://doi.org/10.1127/0935-1221/2001/0013-0577
  25. Mostafa, N.Y, 2005, Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete. Cement and Concrete Research, 35, 7, 1349-1357. https://doi.org/10.1016/j.cemconres.2004.10.011
  26. Myszka, B., SchuBler, M., Hurle, K., Demmert, B., Detsch, R., Boccaccini, A.R., Wolf, S.E., 2019, Phase-specific bioactivity and altered Ostwald ripening pathways of calcium carbonate polymorphs in simulated body fluid. Royal Society of Chemistry Advances, 9, 18232-18244.
  27. O'Connor, W.K., Dahlin, D.C., Nilsen, D.N., Walters, R.P., Turner, P.C., 2000, Carbon dioxide sequestration by direct mineral carbonation with carbonic acid, Proceedings of the 25th International Conference on Coal Utilization and Fuel Systems, Coal Technology Association, Clearwater, Florida., Pittsburgh, PA, September 11-15, 14.
  28. O'Connor, W.K., Dahlin, D.C., Rush, G.E., Gerdemann, S.J., Penner, L.R., Nilsen, D.N., 2005, Aqueous mineral carbonation: mineral availability, pretreatment, reaction parameters, and process studies, DOE/ARC-TR-04-002, Albany Research Center, Albany, OR, USA.
  29. Oral, C.M., Ercan, B., 2018, Influence of pH on morphology, size and polymorph of room temperature synthesized calcium carbonate particles. Powder Technology, 339, 781-788. https://doi.org/10.1016/j.powtec.2018.08.066
  30. Qin, L., Gao, X., 2019, Recycling of waste autoclaved aerated concrete powder in Portland cement by accelerated carbonation. Waste Management, 89, 254-264. https://doi.org/10.1016/j.wasman.2019.04.018
  31. Qu, X., ZhaO, X., 2017, Previous and present investigations on the components, microstructure and main properties of autoclaved aerated concrete-A review, Construction and Building Materials, 135, 505-516. https://doi.org/10.1016/j.conbuildmat.2016.12.208
  32. Radha, A.V., Forbes, T.Z., Killian, C.E., Gilbert, P.U.P.A., Navrotsky, A., 2010, Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proceedings of the National Academy of Sciences of the United States of America, 107, 16438-16443. https://doi.org/10.1073/pnas.1009959107
  33. Rodriguez-Blanco, J.D., Sand, K.K., Benning, L.G., 2017, ACC and Vaterite as Intermediates in the Solution-Based Crystallization of CaCO3. In New Perspectives on Mineral Nucleation and Growth (eds. Van Driessche, A.E.S., Kellermeier, M., Benning, L.G., Gebauer, D.), Springer, Switz., 93-111.
  34. Seifritz, 1990, CO2 disposal by means of silicates. Nature, 345, 486. https://doi.org/10.1038/345486b0
  35. Siauciunas, R., Rupsyte, E., Kitrys, S., Galeckas, V., 2004, Influence of tobermorite texture and specific surface area on CO2 chemisorption. Colloids and surfaces A: Physicochemical and Engineering Aspects, 244, 197-204. https://doi.org/10.1016/j.colsurfa.2004.06.004
  36. Sipila, J., Teir, S., Zevenhoven, R., 2008, Carbon dioxide sequestration by mineral carbonation: Literature review update 2005-2007. Abo Akademi University 52p.
  37. Song, Y.M., Li, B.L., Yang, E.H., Liu, Y.Q., 2016, Chen Z.T., 2016, Gas generation from municipal solid waste incineration bottom ash-a potential aerating agent for lightweight concrete production. Journal of Materials in Civil Engineering, 28, 7, 04016030.
  38. Teir, S., Eloneva, S., Fogelholm, C.J., Zevenhoven, R., 2006, Stability of calcium carbonate and magnesium carbonate in rainwater and nitric acid solutions. Energy Conversion and Management, 47, 3059-3068. https://doi.org/10.1016/j.enconman.2006.03.021
  39. Teir, S., Eloneva, S., Fogelholm, C.J., Zevenhoven, R., 2007a, Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production. Energy, 32, 528-539. https://doi.org/10.1016/j.energy.2006.06.023
  40. Teir, S., Kuusik, R., Fogelholm, C.J., Zevenhoven, R., 2007b, Production of magnesium carbonates from serpentinite for long-term storage of CO2. International Journal of Mineral Processing, 85, 1-15. https://doi.org/10.1016/j.minpro.2007.08.007
  41. Teir, S., Revitzer, H., Eloneva, S., Fogelholm, C.-J., Zevenhoven, R., 2007c, Dissolution of natural serpentinite in mineral and organic acids. International Journal of Mineral Processing, 83, 36-46. https://doi.org/10.1016/j.minpro.2007.04.001
  42. Uibu, M., Kuusik, R., 2007, Concept for CO2 mineralization by oil-shale waste ash in Estonian power production, Jinyue Yan, (ed.), In: Proceedings of IGEC III: The 3rd International Green Energy Conference, Vasteras, Malardalens University, Sweden, 2007, 1075-1085, (CD).
  43. Van Boggelen, W., 2018, History of autoclaved aerated concrete. AAC worldwide 1. 8-13. https://www.aircrete.com/wp-content/uploads/2018/10/History-of-AAC.pdf.
  44. Wakili, K.G., Hugi, E., Karvonen, L., Schnewlin, P., Winnefeld, F., 2015, Thermal behaviour of autoclaved aerated concrete exposed to fire. Cement & Concrete Composities, 62, 52-58. https://doi.org/10.1016/j.cemconcomp.2015.04.018
  45. Yamasaki, A., Iizuka, A., Kakizawa, M., Katsuyama, Y., Nakagawa, M., Fujii, M., Kumagai, K., Yanagisawa, Y., 2006, Development of a carbon sequestration process by the carbonation reaction of waste streams containing calcium or magnesium, Fifth Annual Conference on Carbon Capture & Sequestration, May 8-11, Alexandria, Virginia, USA.