DOI QR코드

DOI QR Code

Effects of Physical Aging on the Bending Recovery of Polyester Films Coated with Ag Nanowires

폴리에스터 필름의 물리적 노화 처리가 은-나노와이어 코팅 필름의 굽힘 회복 특성에 미치는 영향

  • Kim, Hyo Rin (Department of Chemical Engineering, Chonnam National University) ;
  • Han, Jong Hun (Department of Chemical Engineering, Chonnam National University) ;
  • Kim, Sungmin (Department of Textiles, Merchandizing, and Fashion Design, Seoul National University) ;
  • Lee, Moo Sung (Department of Chemical Engineering, Chonnam National University)
  • 김효린 (전남대학교 화학공학부) ;
  • 한종훈 (전남대학교 화학공학부) ;
  • 김성민 (서울대학교 의류학과) ;
  • 이무성 (전남대학교 화학공학부)
  • Received : 2020.11.30
  • Accepted : 2020.12.22
  • Published : 2020.12.31

Abstract

We investigated the effects of physical aging on the bending recovery of polyester conductive films coated with Ag nanowires (AgNWs). The physical aging treatment contributed to the improvement in the bending recovery of polyester films irrespective of the AgNW coating. The stress relaxation-recovery experiment confirmed that the films with good bending recovery demonstrated retarded stress relaxation, increased instantaneous elastic strain, and decreased permanent deformation. The drying temperature after coating had an effect on the bending recovery of polyester films, with a significant effect on the poly(ethylene terephthalate) (PET) film that had a lower glass transition temperature compared to poly(ethylene naphthalate) (PEN) film. Physical aging did not significantly affect the electrical resistance of the AgNW-coated polyester films.

Keywords

References

  1. T. Voutsa, R. Reit, A. Avendano, D. Arreaga, and J. Dupree, "New Polymer Materials Enable a Variety of Flexible Substrates", Information Display, 2017, 4/17, 22-26.
  2. I. Yakimets, D. MacKerron, P. Giesen, K. J. Kilmartin, M. Goorhuis, E. Meinders, and W. A. MacDonald, "Polymer substrates for Flexible Electronics: Achievements and Challenges", Adv. Mater. Res., 2010, 93-94, 5-8. https://doi.org/10.4028/www.scientific.net/AMR.93-94.5
  3. C. Ye, B. G. Stewart, and S. K. Sitaraman, "Strechability of Serpentine Interconnect on Polymer Substrate for Flexible Electronics: A Geometry and Material Sensitivity Analysis", 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), pp.1533-1541, Orlando, FL, 2000.
  4. J. Greener, A. T. Tsou, K. C. Ng, and W. A. Chen, 'The Bending Recovery of Polymer Films. I. A Phenomenological Model", J. Polym. Sci., Part B: Polym. Phys., 1991, 29, 843-858. https://doi.org/10.1002/polb.1991.090290709
  5. J. Greener and J. R. Gillmor, "Long-term Growth of Core-set Curl in Poly(ethylene terephthalate) Film", J. Polym. Sci., Part B: Polym. Phys., 2001, 39, 1957-1967. https://doi.org/10.1002/polb.1171
  6. H. Kim, E. J. Park, S. Kim, M. S. Lee, I. S. Kee, and S. Jung, "Improvement of Bending Recovery of Polyester Film via Physical Aging Treatment", Polymer(Korea), 2015, 39, 593-600. https://doi.org/10.7317/pk.2015.39.4.593
  7. H. R. Kim, M. S. Lee, I. S. Kee, S. Jung, and S. Kim, "Effect of Physical Aging on the Bending Recovery of PEEK and PI Films", Fiber. Polym., 2019, 20, 944-950. https://doi.org/10.1007/s12221-019-8850-y
  8. L. C. E. Struik, "Physical Aging of Amorphous Polymers and Other Materials", Elsevier, NY, 1978.
  9. S. K. Park, J. I. Han, W. K. Kim, and M. G. Kwak, "Deposition of Indium-tin-oxide Films on Polymer Substrates for Application in Plastic-based Flat Panel Displays", Thin Solid Films, 2001, 397, 49-55. https://doi.org/10.1016/S0040-6090(01)01489-4
  10. E. Jung, S.-J. Kim, and S. M. Cho, "Production Technology Status of Organic Lighting and Display via Roll-to-Roll Process", Vacuum Magazine, 2017, 4, 24-28. https://doi.org/10.5757/vacmac.4.2.24
  11. R. Sondergaard, M. Hossel, D. Angmo, T. T. Larsen-Olsen, and F. C. Krebs, "Roll-to-roll Fabrication of Polymer Solar Cells", Materials Today, 2012, 15, 36-49. https://doi.org/10.1016/S1369-7021(12)70019-6
  12. L. Hardy, I. Stevenson, A. Fritz, G. Boiteux, G. Seytre, and A. Schonhals, "Dielectric and Dynamic Mechanical Relaxation Behaviour of Poly(ethylene2,6-naphthalene dicarboxylate). II. Semicrystalline Oriented Films", Polymer, 2003, 44, 4311-4323. https://doi.org/10.1016/S0032-3861(03)00332-X
  13. Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu, and Q. Pei, "Highly Flexible Silver Nanowire Electrodes for Shape-Memory Polymer Light-Emitting Diodes", Adv. Mater., 2011, 23, 664-668. https://doi.org/10.1002/adma.201003398
  14. S. I. Park, J. H. Ahn, X. Feng, S. Wang, Y. Hwang, and J. A. Rogers, "Theoretical and Experimental Studies of Bending of Inorganic Electronic Materials on Plastic Substrates", Adv. Funct. Mater., 2008, 18, 2673-2684. https://doi.org/10.1002/adfm.200800306
  15. C.-H. Liu and X. Yu, "Silver Nanowire-based Transparent, Flexible, and Conductive Thin Film", Nanoscale Res. Lett., 2011, 6, 75-82. https://doi.org/10.1186/1556-276X-6-75
  16. D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, "Flexible Transparent Conductive Materials Based on Silver Nanowire Networks: A Review", Nanotechnology, 2013, 24, 452001. https://doi.org/10.1088/0957-4484/24/45/452001
  17. R. Jarrett, H. Kanda, N. Harano, T. Noguchi, R. Crook, and S. Ito, "Evidence of Plasmon Effects in Random Orientation Silver Nanowire Meshes on Silicon", Solar Energy, 2015, 116, 257-264. https://doi.org/10.1016/j.solener.2015.04.009