DOI QR코드

DOI QR Code

기계학습을 이용한 벼 수발아율 예측

Predicting the Pre-Harvest Sprouting Rate in Rice Using Machine Learning

  • 반호영 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 정재혁 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 황운하 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 이현석 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 양서영 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 최명구 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 이충근 (농촌진흥청 국립식량과학원 작물재배생리과) ;
  • 이지우 (강원도농업기술원 작물연구과) ;
  • 이채영 (충청북도농업기술원 작물연구과) ;
  • 윤여태 (충청남도농업기술원 작물연구과) ;
  • 한채민 (경상북도농업기술원 작물연구과) ;
  • 신서호 (전라남도농업기술원 식량작물연구소) ;
  • 이성태 (경상남도농업기술원 작물연구과)
  • Ban, Ho-Young (Division of Crop Physiology and Production, National Institute of Crop Science, Rural development Administrarion) ;
  • Jeong, Jae-Hyeok (Division of Crop Physiology and Production, National Institute of Crop Science, Rural development Administrarion) ;
  • Hwang, Woon-Ha (Division of Crop Physiology and Production, National Institute of Crop Science, Rural development Administrarion) ;
  • Lee, Hyeon-Seok (Division of Crop Physiology and Production, National Institute of Crop Science, Rural development Administrarion) ;
  • Yang, Seo-Yeong (Division of Crop Physiology and Production, National Institute of Crop Science, Rural development Administrarion) ;
  • Choi, Myong-Goo (Division of Crop Physiology and Production, National Institute of Crop Science, Rural development Administrarion) ;
  • Lee, Chung-Keun (Division of Crop Physiology and Production, National Institute of Crop Science, Rural development Administrarion) ;
  • Lee, Ji-U (Grain Research Division, Gangwondo Agricultural Research and Extension Services) ;
  • Lee, Chae Young (Grain Research Division, Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Yun, Yeo-Tae (Grain Research Division, Chungcheongnam-do Agricultural Research & Extension Services) ;
  • Han, Chae Min (Grain Research Division, Gyeongsangbuk-do Agricultural Research & Extension Services) ;
  • Shin, Seo Ho (Food crop research center, Jeollanamdo Agricultural Research & Extension Services) ;
  • Lee, Seong-Tae (Grain Research Division, Gyeongsangnam-do Agricultural Research & Extension Services)
  • 투고 : 2020.07.20
  • 심사 : 2020.11.09
  • 발행 : 2020.12.30

초록

본 연구는 자연 조건에서 쌀가루용 벼의 수발아율을 예측하기 위한 것으로 기계학습을 이용하여 기상요소들에 따른 수발아율을 간단히 예측할 수 있는 초기 시스템을 개발하기 위해 수행되었다. 이를 위하여 강원도, 충청북도, 경상북도에 위치한 6개 지역에서 쌀가루용 벼 3품종을 재배하였다. 수확 후 수발아율과 출수일을 조사하였으며, 각 지역의 종관기상대의 일평균 기온과 상대 습도, 그리고 강수량 정보를 이용하여 기계학습 모델 중 하나이며, 정확도가 높은 GBM 모델로 수발아율을 예측하였다. 2017년부터 2019년까지 강원과 충북, 그리고 경북의 6개 지역에서 쌀가루 용 벼 3품종에 대해 재배 실험을 수행하였다. 조사 항목은 출수일과 수발아율이었다. 기상자료는 동일한 지역명의 종관기상대를 이용하여 일 평균 기온 및 상대 습도, 그리고 강수량 자료를 수집하였다. 수발아율 예측을 위해 기계학습 모델인 Gradient Boosting Machine (GBM)을 이용하였으며, 학습 투입 변수로는 평균 기온과 상대 습도, 그리고 총 강수량이었다. 또한 수발아 피해 관련 기간을 설정하기 위해 출수 후 몇일 후부터 그 이후의 기간에 대한 실험도 수행하였다. 자료는 수발아 피해 관련 기간의 교정을 위한 training-set과 vali-set, 검증을 위한 test-set으로 구분하였다. training-set과 vali-set으로 교정한 결과, 출수 후 22일 후부터 24일동안에서 가장 높은 score를 나타내었다. test-set으로 검증한 결과는 3.0%보다 낮은 구간에서 수발아율을 약간 높게 예측한 경향이 있었지만, 높은 예측력을 보였다(R2=0.76). 따라서, 기계학습을 이용하여 특정기간동안의 기상요소들로 수발아율을 간단하게 예측할 수 있을 것으로 예상된다. 본 연구의 결과를 종합해 볼 때, 기계학습을 이용하여 특정 기간 동안에 평균 기온과 상대 습도, 그리고 총 강수량으로 높은 수발아율 예측 성능을 보였으며, 이 시스템을 이용하여 일반 농가들을 대상으로 수발아에 관한 피해를 예방할 수 있는 조기 수발아 예측 시스템으로 이용가능 할 것으로 판단된다. 하지만 품종마다 휴면 정도 차이로 인한 수발아 관련 기간에 차이가 있으므로, 다른 쌀가루용 벼 품종에 대해서도 추가로 조사하고, 개별 품종으로 세분화하여 분석한다면 좀 더 정확도 높은 예측 시스템을 개발할 수 있을 것으로 판단된다.

Rice flour varieties have been developed to replace wheat, and consumption of rice flour has been encouraged. damage related to pre-harvest sprouting was occurring due to a weather disaster during the ripening period. Thus, it is necessary to develop pre-harvest sprouting rate prediction system to minimize damage for pre-harvest sprouting. Rice cultivation experiments from 20 17 to 20 19 were conducted with three rice flour varieties at six regions in Gangwon-do, Chungcheongbuk-do, and Gyeongsangbuk-do. Survey components were the heading date and pre-harvest sprouting at the harvest date. The weather data were collected daily mean temperature, relative humidity, and rainfall using Automated Synoptic Observing System (ASOS) with the same region name. Gradient Boosting Machine (GBM) which is a machine learning model, was used to predict the pre-harvest sprouting rate, and the training input variables were mean temperature, relative humidity, and total rainfall. Also, the experiment for the period from days after the heading date (DAH) to the subsequent period (DA2H) was conducted to establish the period related to pre-harvest sprouting. The data were divided into training-set and vali-set for calibration of period related to pre-harvest sprouting, and test-set for validation. The result for training-set and vali-set showed the highest score for a period of 22 DAH and 24 DA2H. The result for test-set tended to overpredict pre-harvest sprouting rate on a section smaller than 3.0 %. However, the result showed a high prediction performance (R2=0.76). Therefore, it is expected that the pre-harvest sprouting rate could be able to easily predict with weather components for a specific period using machine learning.

키워드

참고문헌

  1. Baek, J., and N. Chung, 2014: Pre-Harvest Sprouting Variation of Rice Seeds Located on Each Panicle Position According to Grain Filling Days. Korean Journal of Crop Science 59(1), 22-26. http://dx.doi.org/10.7740/kjcs.2014.59.1.022
  2. Bewley, J. D., 1997: Seed germination and dormancy. Plant Cell 9, 1055-1066. https://doi.org/10.1105/tpc.9.7.1055
  3. Feng, Z., C. Xu, and D. Tao, 2018: Historical gradient boosting machine. EPiC Series in Computing 55, 68-80. http://doi.org/10.29007/2sdc
  4. Friedman, J. H., 2001: Greedy function approximation: a gradient boosting machine. Annals of Statistics 29(5), 1189-1232. https://doi.org/10.1214/aos/1013203451
  5. Hu, Q., C. Lin, Y. Guan, M. S. Sheteiwy, W. Hu, and J. Hu, 2017: Inhibitory effect of eugenol on seed germination and pre-harvest sprouting of hybrid rice (Oryza sativa L.). Scientific Reports 7, 5295. https://doi.org/10.1038/s41598-017-04104-x
  6. Huang, D., P. Yan, X. Xiao, J. Zhu, X. Tang, A. Huang, and J. Cheng, 2019: The tri-pole relation among daily mean temperature, atmospheric moisture and precipitation intensity over China. Global and Planetary Change 179, 1-9. https://doi.org/10.1016/j.gloplacha.2019.04.016
  7. Im, E., N. Thanh, Y. Kim, and J. Ahn, 2019: 2018 summer extreme temperatures in South Korea and their intensification under 3 ℃ global warming. Environmental Research letters 14, 094020. https://doi.org/10.1088/1748-9326/ab3b8f
  8. Jeong, G. A., J. Y. Park, Y. L. Shin, S. J. Lee, and C. J. Lee, 2019: Quality characteristics of noodles supplemented with rice flour and alkaline reagent. Korean journal of Food and Nutrition 51(3), 237-242. https://doi.org/10.9721/KJFST.2019.51.3.237
  9. Ju, Y. C., S. W. Han, J. S. Park, and K. Y. Park, 2000: Effective Screening Method for Viviparous Germination of Rice. Korean Journal of Crop Science 45(2), 103-107.
  10. Kang, H., 2017: An analysis on the characteristics of rice consumption in Korea. Korean Journal of Agricultural Economics 58(3), 205-214.
  11. Kang, S., J. Shon, H. Kim, S. Kim, J. Choi, J. Park, Y. Yoon, J. Sim, and W. Yang, 2018: Analysis of genetic variation in pre-harvest sprouting at different cumulative temperatures after heading of rice. Korean Journal of Crop Science 63(1), 8-17. https://doi.org/10.7740/kjcs.2018.63.1.008
  12. Kim, M., 2013: Review on rice flour manufacturing and utilization. Journal of Biosystems Engineering 38(2), 103-112. http://dx.doi.org/10.5307/JBE.2013.38.2.103
  13. Kim, S. H., 2007: Cultural perspectives and current consumption changes of cooked rice in Korean diet. Nutrition Research and practice 1, 8-13. https://doi.org/10.4162/nrp.2007.1.1.8
  14. Kim, S. S., and H. Y. Chung, 2018: Effects of the type and percentage of a lipid on the quality characteristics of rice bread depending on the use of wet and dry rice flour. Korean journal of Food and Nutrition 31(4), 511-519. https://doi.org/10.9799/KSFAN.2018.31.4.511
  15. Lee, G., Y. Jeon, H. Lee, and D. Hyun, 2018: Variation in pre-harvest sprouting resistance, seed germination and changes in abscisic acid levels during grain development in diverse rice genetic resources. Plant Genetic Resources 16(1), 18-27. https://doi.org/10.1017/S1479262116000319
  16. Lee, H., W. Hwang, J. Jeong, S. Yang, Y. Lim, M. Choi, N. Jeong, C. Lee, and K. Choi, 2019: Studies on the temperature response and critical day-length affecting the heading date of major cultivating rice varieties in recent Korean paddy field. Korean Journal of Crop Science 64(4), 323-335. https://doi.org/10.7740/kjcs.2019.64.4.323
  17. Lee, J., E. Ahn, W. Ha, E. Jeong, Y. Won, Y. Jeon, S. Lee, K. Jung, J. Chang, and J. Lee, 2015: Viviparous characteristics of four Korean Japonica Rice cultivars adapted to tropical region. Journal of the Korean Society of international Agriculture 27(2), 168-171. https://doi.org/10.12719/KSIA.2015.27.2.168
  18. Ministry of Agriculture, Food and rural Affairs (MAFRA), 2019: "The damaged rice by typhoon, purchasing all purchases of desired production", Retrieved from https://www.mafra.go.kr/mafra/293/subview.do?enc=Zm5jdDF8QEB8JTJGYmJzJTJGbWFmcmElMkY2OCUyRjMyMTU1OSUyRmFydGNsVmlldy5kbyUzRmJic0NsU2VxJTNEJTI2cmdzRW5kZGVTdHIlM0QlMjZiYnNPcGVuV3JkU2VxJTNEJTI2cGFzc3dvcmQlM0QlMjZzcmNoQ29sdW1uJTNEc2olMjZwYWdlJTNEODElMjZyZ3NCZ25kZVN0ciUzRDIwMTkuMDkuMjYlMjZyb3clM0QxMCUyNmlzVmlld01pbmUlM0RmYWxzZSUyNnNyY2hXcmQlM0QlMjY%3D
  19. Natekin, A., and A. Knoll, 2013: Gradient boosting machines, a tutorial. Frontiers in Neurorobotics 7, 21. https://doi.org/10.3389/fnbot.2013.00021
  20. Park, H., B. Ku, S. Kang, M. Choi, W. Sang, T. Park, Y. Kim, K. Nam, and B. Kim, 2013: Estimate of translating Dates for Three Maturity Groups of Rice Cultivars to harvest before Chuseok holiday in Korea. Journal of the Korean society of international Agriculture 25(3), 307-313. https://doi.org/10.12719/KSIA.2013.25.3.307
  21. Park, J. S., and H. D. Kim, 2009: Viviparous germination characteristics of rice varieties adaptable to central region of Korea. Korean Journal of Crop Science 54(3), 241-248.
  22. Park, S., and H. Kim, 2016: Effect of black rice powder levels on quality properties of emulsion-type sausage. Food Science of Animal Resources 36(6), 737-743. https://doi.org/10.5851/kosfa.2016.36.6.737
  23. Park, K. B., and R. K. Park, 1984: Studies on the viviparous germination of Indica × Japonica type varieties in paddy rice. Korean Journal of Crop Science 29(1), 15-18.
  24. Won, Y., E. Ahn, E. Jeong, J. Chang, J. Lee, K. Jung, U. Hyun, Y. Cho, S. Oh, M. Yoon, B. Kim, and B. Kim, 2019; An opaque endosperm rice cultivar, 'Hangaru', suitable for exclusive dry-milling rice flour production. Korean Journal of Breeding Science 51(2), 134-139. https://doi.org/10.9787/KJBS.2019.51.2.134
  25. Won, Y., E. Ahn, K. Jung, H. Hong, U. Hyun, H. Park, M. Yoon, J. Lee, J. Seo, E. Jeong, J. Chang, J. Kwak, and S. Oh, 2020: Agricultural characteristics of 'Misiru' with improved dry-milling rice flour trait. Korean Journal of Breeding Science 52(2), 151-157. https://doi.org/10.9787/KJBS.2020.52.2.151