DOI QR코드

DOI QR Code

Control of Galvanic Corrosion Between A516Gr.55 Steel and AA7075T6 Depending on NaCl Concentration and Solution Temperature

  • Hur, S.Y. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Jeon, J.M. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Kim, K.T. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Kim, Y.S. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
  • Received : 2020.12.15
  • Accepted : 2020.12.18
  • Published : 2020.12.31

Abstract

Chloride ion is one of the most important corrosive agents in atmospheric corrosion, especially in marine environments. It has high adsorption rate and increases the conductivity of electrolytes. Since chloride ions affect the protective properties and the surface composition of the corrosion product, they increase the corrosion rate. A low level of chloride ions leads to uniform corrosion, whereas a high level of chloride ions may induce localized corrosion. However, higher solution temperatures tend to increase the corrosion rate by enhancing the migration of oxygen in the solution. This work focused on the effect of NaCl concentration and temperature on galvanic corrosion between A516Gr.55 carbon steel and AA7075T6 aluminum alloys. When AA7075T6 aluminum alloy was galvanically coupled to A516Gr.55 carbon steel, AA7075T6 was severely corroded regardless of NaCl concentration and solution temperature, unlike the corrosion properties of single specimen. The combined effect of surface treatment involving carbon steel and aluminum alloy on corrosion behavior was also discussed.

Keywords

References

  1. G. T. Seo, H. R. Jung, H. D. Lee, W. S. Chung, and C. S. Gee,, J. Korean Soc. Environ. Eng., 20, 1151 (1998).
  2. W. S. Chung, H. D. Lee, M. J. Yu, and P. J. Kwak, J. Korean Soc. Environ. Eng., 23, 1611 (2001).
  3. K. T. Kim and Y. S. Kim, Corros. Sci. Tech., 17, 231 (2018). http://dx.doi.org/10.14773/cst.2018.17.5.231
  4. Y. Song, G. Jiang, Y. Chen, P. Zhao, and Y. Tian, Science reports, Article number: 6865 (2017). https://doi.org/10.1038/s41598-017-07245-1
  5. Y. Ma, Y. Li, and F. Wang, Corros. Sci., 51, 997 (2009). https://doi.org/10.1016/j.corsci.2009.02.009
  6. H. Pancheva, G. Reznichenko, N. Miroshnichenko, A. Sincheskul, A. Pilipenko, and V. Loboichenko, Eastern-European J. of Enterprise Technologies, 4, 88 (2017). https://doi.org/10.15587/1729-4061.2017.108908
  7. M. Morcillo, B. Chico, J. Alcantara, I. Diaz, J. Simancas, and D. D. L. Fuente, , Mater. Corros., 66, 882 (2015). https://doi.org/10.1002/maco.201407940
  8. S. K. Chang, , J. Korean Inst. Surf. Eng., 30, 69 (1997). http://www.koreascience.or.kr/article/JAKO199711920551682.page
  9. Y. K. Kim, Y. I. Heo, and D. K. Ra, J. of Korean Society of Environmental Technology, 3, 293 (2002).
  10. R. W. Revie and H. H. Uhlig, Corrosion and Corrosion Control, 4th ed., p. 121, Wiley-Interscience (2008).
  11. S. Y. Hur, K. T. Kim, and Y. S. Kim, Corros. Sci. Tech., 18, 129 (2019). https://doi.org/10.14773/cst.2019.18.4.129
  12. H. Ezuber, A. E. Houd, and F. E. Shawesh, , Mater. Design, 29, 801 (2008). https://doi.org/10.1016/j.matdes.2007.01.021
  13. P. M. Natishan and W. E. O'Grady, J. Electrochem. Soc., 161, C421 (2014). https://doi.org/10.1149/2.1011409jes
  14. A. A. Younis, M. M. B. El-sabbah, and R. Holz, , J. Solid State Electr., 16, 1033 (2012). https://doi.org/10.1007/s10008-011-1476-7
  15. B. Zaid, D. Saidi, A. Benzaid, and S. Hadji, Corros. Sci., 50, 1841 (2008). https://doi.org/10.1016/j.corsci.2008.03.006
  16. Y. Wang, G. Cheng, W. Wu, Q. Qiao, Y. Li, and X. Li, Appl. Surf. Sci., 349, 746 (2015). http://dx.doi.org/10.1016/j.apsusc.2015.05.053
  17. Z. S. Smialowska, Corros. Sci., 41, 1743 (1999). https://doi.org/10.1016/S0010-938X(99)00012-8
  18. W. Huang, B. L. Hurley, F. Yang, and R. G. Buchheit, Electrochim. Acta, 199, 242, (2016). http://dx.doi.org/10.1016/j.electacta.2016.03.125
  19. G. S. Frankel, J. Electrochem. Soc., 145, 2168 (1998). https://doi.org/10.1149/1.1838615
  20. M. Cao, L. Liu, L. Fan, Z. Yu, Y. Li, E. E. Oguzie, and F. Wang, Materials, 11, 235 (2018). https://doi.org/10.3390/ma11020235
  21. S. Y. Hur, K. T. Kim, Y. R. Yoo, and Y. S. Kim, Corros. Sci. Tech., 19, 75 (2020). https://doi.org/10.14773/cst.2020.19.2.75