DOI QR코드

DOI QR Code

혼성방파제 케이슨에 작용하는 파압과 선단 주변에서 파랑특성에 관한 수치모의(일방향불규칙파에 대해)

Numerical Simulation of Wave Pressure Acting on Caisson and Wave Characteristics near Tip of Composite Breakwater (for One Directional Irregular Waves)

  • 전재형 (한국해양대학교 대학원 토목환경공학과) ;
  • 최군호 (한국해양대학교 대학원 토목환경공학과) ;
  • 이광호 (가톨릭관동대학교 토목공학과) ;
  • 김도삼 (한국해양대학교 건설공학과)
  • Jun, Jae-Hyoung (Department of Civil and Environmental Engineering, Korea Maritime and Ocean University) ;
  • Choi, Goon-Ho (Department of Civil and Environmental Engineering, Korea Maritime and Ocean University) ;
  • Lee, Kwang-Ho (Dept. of Civil Eng., Catholic Kwandong University) ;
  • Kim, Do-Sam (Dept. of Civil Eng., Korea Maritime and Ocean University)
  • 투고 : 2020.11.20
  • 심사 : 2020.12.18
  • 발행 : 2020.12.31

초록

선행연구에서는 3차원규칙파에 대해 olaFlow 수치모델을 적용하여 혼성방파제의 선단 주변에서 파랑특성 및 케이슨에 작용하는 파압특성을 검토하였다. 본 연구에서는 동일한 수치모델과 혼성방파제의 배치 및 형상을 적용하여 일방향불규칙파의 작용 하에 고천단의 마운드 상에 놓인 케이슨의 선단 주변에서 회절파의 발생과 배후역으로의 영향 및 케이슨에 작용하는 충격쇄파압을 포함한 파압의 공간적인 변동 등을 2차원 및 3차원적으로 검토한다. 또한, 수치해석으로부터 혼성방파제 주변에서 주파수스펙트럼, 평균유의파고, 평균수평유속 및 평균난류운동에너지의 변동특성도 면밀히 분석·검토한다. 이로부터 2차원수치해석에서는 발생되지 않았던 충격쇄파압이 3차원수치해석에서는 발생되는 경우가 나타나고, 충격쇄파압의 발생 시 경우에 따라 기존의 설계조건보다 매우 큰 파압이 정수면 근방의 케이슨의 전면 벽체에 작용되는 등의 중요한 결과를 얻을 수 있었다. 또한, 동일한 입사유의파랑에 대해 케이슨에 작용하는 파압분포가 방파제의 길이에 따라 변동하는 것을 확인할 수 있었으며, 이러한 변동은 크기에서 차이를 나타내지만, 3차원규칙파에 대한 선행연구의 경우와 유사한 특성을 갖는다.

In the previous study, both the wave characteristics at the tip of composite breakwater and on caisson were investigated by applying olaFlow numerical model of three-dimensional regular waves. In this paper, the same numerical model and layout/shape of composite breakwater as applied the previous study under the action of one directional irregular waves were used to analyze two and three-dimensional spatial change of wave force including the impulsive breaking wave pressure applied to trunk of breakwater, the effect of rear region, and the occurrence of diffracted waves at the tip of caisson located on the high crested rubble mound. In addition, the frequency spectrum, mean significant wave height, mean horizontal velocity, and mean turbulent kinetic energy through the numerical analysis were studied. In conclusion, the larger wave pressure occurs at the front wall of caisson around the still water level than the original design conditions when it generates the shock-crushing wave pressure in three-dimensional analysis condition. Which was not occurred by two-dimensional analysis. Furthermore, it was confirmed that the wave pressure distribution at the caisson changes along the length of breakwater when the same significant incident wave was applied to the caisson. Although there is difference in magnitude, but its variation shows the similar tendency with the case of previous study.

키워드

참고문헌

  1. Choi, G.H., Jun, J.H., Lee, K.H. and Kim, D.S. (2020). 3D-numerical simulation of wave pressure acting on caisson and wave characteristics near tip of composite breakwater. Journal of Korean Society of Coastal and Ocean Engineers, 32(3), 180-201. https://doi.org/10.9765/KSCOE.2020.32.3.180
  2. Ghosal, S., Lund, T., Moin, P. and Akselvoll, K. (1995). A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mechanics, 286, 229-255. https://doi.org/10.1017/S0022112095000711
  3. Goda, Y. (1988). Statistical variability of sea state parameters as a function of wave spectrum. Coastal Engineering in Japan.
  4. Goda, Y. (2000). Random seas and design of maritime structures, World Scientific Publishing, Singapore.
  5. Goda, Y. (2010). Random seas and design of maritime structures. 3rd Edition, World Scientific Publishing, Co. Ltd., Singapore.
  6. Higuera, P., Lara, J.L. and Losada, I.J. (2014). Three-dimensional interaction of waves and porous coastal structures using Open-FOAM. Part I: Formulation and validation. Coastal Engineering, 83, 243-258. https://doi.org/10.1016/j.coastaleng.2013.08.010
  7. Higuera, P., Liu, P.F., Lin, C., Wong, W.Y. and Kao, M.J. (2018). Laboratory-scale swash flows generated by a non-breaking solitary wave on a steep slope. Journal of Fluid Mechanics, 847, 186-227. https://doi.org/10.1017/jfm.2018.321
  8. Ito, Y. and Tanimoto, K. (1971). Meandering damage of composite type breakwater. Tech. Note of Port and Harbour Res. Inst., 112 (in Japanese).
  9. Jensen, B., Jacobsen, N.G. and Christensen, E.D. (2014). Investigations on the porous media equations and resistance coefficients for coastal structures. Coastal Engineering, 84, 56-72. https://doi.org/10.1016/j.coastaleng.2013.11.004
  10. Kim, Y.T. and Lee, J.I. (2017). Hydraulic experiments on stable armor weight and covering range of round head of rubble-mound breakwater armored with tetrapods: Non-breaking conditions. Journal of Korean Society of Coastal and Ocean Engineers, 29(6), 389-398 (in Korean). https://doi.org/10.9765/KSCOE.2017.29.6.389
  11. Kondo, S. and Takeda, H. (1983). Wave dissipating structures, Morikita Publishing Co. Ltd. (in Japanese).
  12. Shimosako, K., Takahashi, T. and Tanimoto, K. (1994). Estimating the sliding distance of composite breakwaters due to wave forces inclusive of impulsive forces. ICCE, 1580-1594.
  13. Takahashi, S., Tanimoto, K. and Shimosako, K. (1993). Experimental study of impulsive pressure on composite breakwaters-Fundamental feature of impulsive pressure and the impulsive pressure coefficient-. Rept. Port and Harbour Res. Inst., 31(5), 33-72 (in Japanese).
  14. Takahashi, S., Tanimoto, K. and Shimosako, K. (1994). A proposal of impulsive pressure coefficient for design of composite breakwaters. Proceedings of the International Conference on Hydrotechnical Engineering for Port and Harbour Construction, 489-504.
  15. Ye, J., Jeng, D., Liu, P.L.-F., Chan, A.H.C., Wang, R. and Zhu, C. (2014). Breaking wave-induced response of composite breakwater and liquefaction in seabed foundation. Coastal Engineering, 85, 72-86. https://doi.org/10.1016/j.coastaleng.2013.08.003