DOI QR코드

DOI QR Code

탄소복합재 접착공정을 위한 CFRP의 레이저 표면처리 기법의 적용

Application of Laser Surface Treatment Technique for Adhesive Bonding of Carbon Fiber Reinforced Composites

  • Hwang, Mun-Young (Department of Mechatronics Engineering, and LANL-JBNU Engineering Institute-Korea, Jeonbuk National University) ;
  • Kang, Lae-Hyong (Department of Mechatronics Engineering, Department of Flexible and Printable Electronics, and LANL-JBNU Engineering Institute-Korea, Jeonbuk National University) ;
  • Huh, Mongyoung (Korea Institute of Carbon Convergence Technology)
  • 투고 : 2020.10.30
  • 심사 : 2020.12.07
  • 발행 : 2020.12.31

초록

접착강도는 표면처리 기술을 통해 향상시킬 수 있다. 가장 일반적인 방법은 기계적인 결합력을 향상시킬 수 있는 접착 표면의 변화이다. 본 연구는 접착면의 레이저 표면 처리가 기계적 결합력에 미치는 영향과 탄소섬유 강화 복합재료(CFRP)의 접착 결합에 대해 설명한다. 1064 nm의 레이저를 활용하여 표면 조도를 패턴화했다. 레이저 샷의 수, 패턴의 방향, 길이가 CFRP/CFRP 단일 조인트의 접착력에 미치는 영향을 인장 시험을 통해 조사했다. ASTM D5868에 따른 시험을 수행하였으며, 파단 후 손상된 표면을 분석하여 결합 메커니즘을 결정했다. 접착 강도의 증가를 위해서는 CFRP 표면에 최적화된 레이저 샷의 수와 조도 깊이가 구성되어야 한다. 인장방향에서의 전단응력을 고려할 때, 접착층의 파단 경로를 길어지게 하는 45°의 방향의 조도가 접착강도의 증가를 야기했다. 그러나 레이저에 의한 조도의 길이는 접착 강도에 크게 영향을 주지 못했다. 레이저를 이용한 접착면의 표면처리는 기계적 결합 메커니즘을 확보하고 CFRP 접착 조인트의 접착 강도를 향상시키는 적합한 방법이라는 결론을 도출할 수 있다. 레이저 처리를 이용한 이점을 완전히 이용하기 위해서는 최적화된 레이저 공정 변수에 대한 연구가 반드시 필요하다.

The adhesive strength can be improved through surface treatment. The most common method is to improve physical bonding by varying the surface conditions. This study presents the effect of laser surface treatment on the adhesive strength of CFRP. The surface roughness was patterned using a 1064 nm laser. The effects of the number of laser shots and the direction and length of the pattern on the adhesion of the CFRP/CFRP single joint were investigated through tensile tests. Tests according to ASTM D5868 were performed, and the bonding mechanism was determined by analyzing the damaged surface after a fracture. The optimized number of the laser shots and the optimized depth of the roughness should be required to increase the bonding strength on the CFRP surface. When considering the shear stress in the tensile direction, the roughness pattern in the direction of 45° that increases the length of the fracture path in the adhesive layer resulted in an increase of the adhesive strength. The surface treatment of the bonding surface using a laser is a suitable method to acquire a mechanical bonding mechanism and improve the bonding strength of the CFRP bonding joint. The study on the optimized laser process parameters is required for utilizing the benefits of laser surface processing.

키워드

참고문헌

  1. Lobel, T., Holzhuter, D., Sinapius, M., and Huhne, C., "A Hybrid Bondline Concept for Bonded Composite Joints," International Journal of Adhesion and Adhesives, Vol. 68, 2016, pp. 229-238. https://doi.org/10.1016/j.ijadhadh.2016.03.025
  2. Guo, X., Guan, Z.D., Nie, H.C., Tan, R.M., and Li, Z.S., "Damage Tolerance Analysis of Adhesively Bonded Composite Single Lap Joints Containing a Debond Flaw," The Journal of Adhesion, Vol. 93, No. 3, 2017, pp. 216-234. https://doi.org/10.1080/00218464.2015.1066677
  3. Liu, S., Cheng, X., Zhang, Q., Zhang, J., Bao, J., and Guo, X., "An Investigation of Hygrothermal Effects on Adhesive Materials and Double Lap Shear Joints of CFRP Composite Laminates," Composites Part B: Engineering, Vol. 91, 2016, pp. 431-440. https://doi.org/10.1016/j.compositesb.2016.01.051
  4. Luo, H., Yan, Y., Zhang, T., and Liang, Z., "Progressive Failure And Experimental Study of Adhesively Bonded Composite Single-lap Joints Subjected to Axial Tensile Loads," Journal of Adhesion Science and Technology, Vol. 30, No. 8, 2016, pp. 894-914. https://doi.org/10.1080/01694243.2015.1131806
  5. Ungureanu, D., Taranu, N., Lupasteanu, V., Rosu, A.R., and Mihai, P., "The Adhesion Theories Applied to Adhesively Bonded Joints of Fiber Reinforced Polymer Composite Elements," Buletinul Institutului Politehnic din lasi. Sectia Constructii, Arhitectura, Vol. 62, No. 2, 2016, pp. 37.
  6. Wegman, R.F., and Van Twisk, J., Surface Preparation Techniques for Adhesive Bonding, W. Andrew, Ed., Elsevier, USA, 2012.
  7. Adams, R.D., Adhesive Bonding: Science, Technology and Applications, Woodhead Publishing Limited, England, 2005.
  8. Kwon, D.J., Park, S.M., Park, J.M., and Kwon, I.J., "A Study on Bonding Process for Improvement of Adhesion Properties Between CFRP-Metal Dual Materials," Composites Research, Vol. 30, No. 6, 2017, pp. 416-421. https://doi.org/10.7234/COMPOSRES.2017.30.6.416
  9. Deng, S., Djukic, L., Paton, R., and Ye, L., "Thermoplastic-epoxy Interactions and Their Potential Applications in Joining Composite Structures-A Review," Composites Part A: Applied Science and Manufacturing, Vol. 68, 2015, pp. 121-132. https://doi.org/10.1016/j.compositesa.2014.09.027
  10. Gude, M.R., Prolongo, S.G., and Urena, A., "Adhesive Bonding of Carbon Fibre/epoxy Laminates: Correlation between Surface and Mechanical Properties," Surface and Coatings Technology, Vol. 207, 2012, pp. 602-607. https://doi.org/10.1016/j.surfcoat.2012.07.085
  11. Benard, Q., Fois, M., and Grisel, M., "Influence of Fibre Reinforcement and Peel Ply Surface Treatment Towards Adhesion of Composite Surfaces," International Journal of Adhesion and Adhesives, Vol. 25, No. 5, 2005, pp. 404-409. https://doi.org/10.1016/j.ijadhadh.2004.11.006
  12. Cho, T.M., Choo, Y.S., Lee, M.J., Oh, H.C., Lee, B.C., Park, T.H., and Shin, Y.S., "Effect of Surface Roughness on the Adhesive Strength of the Heat-resistant Adhesive RTV88," Journal of Adhesion Science and Technology, Vol. 23, No. 15, 2009, pp. 1875-1882. https://doi.org/10.1163/016942409X12508517390671
  13. Encinas, N., Oakley, B.R., Belcher, M.A., Blohowiak, K.Y., Dillingham, R.G., Abenojar, J., and Martinez, M.A., "Surface Modification of Aircraft Used Composites for Adhesive Bonding," International Journal of Adhesion and Adhesives, Vol. 50, 2014, pp. 157-163. https://doi.org/10.1016/j.ijadhadh.2014.01.004
  14. Wu, G.M., Shyng, Y.T., Kung, S.F., and Wu, C.F., "Oxygen Plasma Processing and Improved Interfacial Adhesion in PBO Fiber Reinforced Epoxy Composites," Vacuum, Vol. 83, 2009, pp. S271-S274. https://doi.org/10.1016/j.vacuum.2009.01.080
  15. Leone, C., and Genna, S., "Effects of Surface Laser Treatment on Direct Co-bonding Strength of CFRP Laminates," Composite Structures, Vol. 194, 2018, pp. 240-251. https://doi.org/10.1016/j.compstruct.2018.03.096
  16. Oliveira, V., Sharma, S.P., De Moura, M.F.S.F., Moreira, R.D.F., and Vilar, R., "Surface Treatment of CFRP Composites Using Femtosecond Laser Radiation," Optics and Lasers in Engineering, Vol. 94, 2017, pp. 37-43. https://doi.org/10.1016/j.optlaseng.2017.02.011
  17. Fischer, F., Kreling, S., and Dilger, K., "Surface Structuring of CFRP by Using Modern Excimer Laser Sources," Physics Procedia, Vol. 39, 2012, pp. 154-160. https://doi.org/10.1016/j.phpro.2012.10.025
  18. Yokozeki, T., Ishibashi, M., Kobayashi, Y., Shamoto, H., and Iwahori, Y., "Evaluation of Adhesively Bonded Joint Strength of CFRP with Laser Treatment," Advanced Composite Materials, Vol. 25, No. 4, 2016, pp. 317-327. https://doi.org/10.1080/09243046.2015.1052130
  19. Wang, H.Q., Sun, J.S., Li, C.N., Geng, S.N., Sun, H.G., and Wang, G.L., "Microstructure and Mechanical Properties of Molybdenum-iron-boron-chromium Cladding Using Argon arc Welding," Materials Science and Technology, Vol. 32, No. 16, 2016, pp. 1694-1701. https://doi.org/10.1080/02670836.2016.1140926
  20. Tao, R., Alfano, M., and Lubineau, G., "Laser-based Surface Patterning of Composite Plates for Improved Secondary Adhesive Bonding," Composites Part A: Applied Science and Manufacturing, Vol. 109, 2018, pp. 84-94. https://doi.org/10.1016/j.compositesa.2018.02.041
  21. Davis, G.D., "Surface Treatment of Aluminum and Titanium: From Basic Research to Production Failure Analysis," Surface and Interface Analysis, Vol. 17, No. 7, 1991, pp. 439-447. https://doi.org/10.1002/sia.740170706