DOI QR코드

DOI QR Code

석유계 피치가 첨가된 고온 탄소복합재용 페놀수지의 열 유변학적 거동 연구

Thermo-rheological behaviors of Phenolic Resins Blended with Petroleum-based Pitches for High Temperature Carbon Composites

  • Yang, Jae-Yeon (Korea Institute of Carbon Convergence Technology) ;
  • Kuk, Yun-Su (Korea Institute of Carbon Convergence Technology) ;
  • Seo, Min-Kang (Korea Institute of Carbon Convergence Technology) ;
  • Kim, Byoung-Suhk (Department of Organic Materials and Fiber Engineering, Jeonbuk National University)
  • 투고 : 2020.11.13
  • 심사 : 2020.12.11
  • 발행 : 2020.12.31

초록

본 연구에서는 각각에 다른 연화점을 갖는 석유계 피치의 열 유변학적 특성을 연구하였으며, 이를 함침용 페놀수지에 석유계 피치를 첨가하여 B-stage 형태의 페놀수지/석유계 피치 혼합물을 제조하였다. 그 결과, 연화점이 다른 석유계 피치는 QI의 함량이 증가할수록 피치의 유동성이 감소하였고, 고체의 점탄성 특성을 나타내었다. 또한, 다른 연화점을 갖는 석유계 피치를 페놀수지에 첨가함으로써, 페놀수지의 경화거동과 열 유변학적 특성에 미치는 영향에 대해 고찰하였을 때, 다른 연화점의 석유계 피치를 첨가함에 따라 페놀수지의 경화속도 및 경화거동을 조절할 수 있었으며, 이 중 P-Pitch 2가 첨가된 페놀수지 혼합물의 경우 동일한 경화 온도조건에서 다른 혼합물에 비해 유동성이 높은 것을 확인할 수 있었다.

In this study, the thermo-rheological behaivors of petroleum pitches with different softening points were studied, and a B-stage phenolic resins/petroleum pitches blends were prepared by adding petroleum pitches to the phenolic resins. As a result, the petroleum pitch with different softening points decreased the fluidity of the petroleum pitch as the Quinoline insoluble (QI) content increased and showed the viscous properties of the solid. In addition, the effect of adding petroleum pitches having different softening points on the thermo-rheological properties of phenolic resins was investigated. When petroleum pitch with a high softening point was added, the fluidity of the phenolic resin was reduced, and the hardening behavior was fast. It was possible to control the curing rate and curing behavior of the phenolic resin by adding petroleum pitches of different softening points. Among them, the phenolic resin mixture to which P-Pitch 2 was added has a higher fluidity than other blends under the same curing temperature condition.

키워드

참고문헌

  1. Park, S.J., Seo, M.K., Park, M.L., and Kim, H.Y., Carbon Materials, Myoungmoon Pub. Co., Seoul, Republic of Korea, 2015.
  2. Yang, J.Y., Ko, J.K., Kim, B.S., and Seo, M.K., "Application and Standardization Trend of Carbon Fiber during the Fourth Industrial Revolution", Fiber Technology and Industry, Vol. 21, No. 4, 2017, pp. 263-272.
  3. Seo, M.K., and Park, S.J., "Manufacturing Method of Carbon Fibers and Their Application Fields", Polymer Science and Technology, Vol. 21, No. 2, 2010, pp. 130-140.
  4. Yang, J.Y., Park, S.H., Park, S.J., and Seo, M.K., "Preparation and Characteristic of Carbon/Carbon Composites with Coal-tar and Petroleum Binder Pitches", Applied Chemistry for Engineering, Vol. 26, No. 4, 2015, pp. 406-412. https://doi.org/10.14478/ace.2015.1035
  5. Chockalingam, K., Saravanan, U., and Murali Krishnan, J., "Characterization of Petroleum Pitch using Steady Shear Experiments", International Journal of Engineering Science, Vol. 48, No. 11, 2010, pp. 1092-1109. https://doi.org/10.1016/j.ijengsci.2010.08.008
  6. Blanco, C., Fleurot, O., Menendez, R., Santamaria, R., Bermejo, J., and Edie, D., "Contribution of the Isotropic Phase to the Rheology of Partially Anisotropic Coal-tar Pitches", Carbon, Vol. 37, No. 7, 1999, pp. 1059-1064. https://doi.org/10.1016/S0008-6223(98)00299-1
  7. Xuefeng, L., Jie, Z., and Kun, Q., "Densification Rate and Mechanical Properties of Carbon/carbon Composites with Layer-designed Preform", Ceramics International, Vol. 45, No. 4, 2019, pp. 4167-4175. https://doi.org/10.1016/j.ceramint.2018.11.085
  8. Ehrburger, P., Sanseigne, E., and Tahon, B., "Formation of Porosity and Change in Binder Pitch Properties During Thermal Treatment of Green Carbon Materials", Carbon, Vol. 34, No. 12, 1996, pp. 1493-1499. https://doi.org/10.1016/S0008-6223(96)00111-X
  9. Majidi, B., Taghavi, S.M., Fafard, M., Ziegler, D., and Alamdari, H., "Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures", Materials, Vol. 9, No. 5, 2016, pp. 334. https://doi.org/10.3390/ma9050334
  10. Ciesinska, W., "Thermo-rheological Properties of Coal-tar Pitch modified with Phenol-Formaldehyde Resin", J Therm Anal Calorim, Vol. 130, No. 1, 2017, pp. 187-195. https://doi.org/10.1007/s10973-017-6471-5
  11. Braga, C.P., Dutra, C.H.M.C., Castro, L.D., and Andrade, C.T., "Influence of Heat and Pressure Treatment on the Rheological Behavior of Petroleum Pitches", Fuel, Vol. 88, No. 5, 2009, pp. 853-860. https://doi.org/10.1016/j.fuel.2008.10.029
  12. Dimitrienko, Y.I., "Modelling of Carbon-carbon Composites Manufacturing Processes", Composites Part A, Vol. 30, No. 3, 1999, pp. 221-230. https://doi.org/10.1016/S1359-835X(98)00166-3
  13. Hu, Y., Luo, R., Zhang, Y., Zhang, J., and Li, J., "Effect of Preform Density on Densification Rate and Mechanical Properties of Carbon/carbon Composites", Materials Science and Engineering: A, Vol. 527, No. 3, 2010, pp. 797-801. https://doi.org/10.1016/j.msea.2009.09.033
  14. Matzinos, P., Patrick, J., and Walker, A., "The Efficiency and Mechanism of Densification of 2-D C/C Composites by Coal-tar Pitch Impregnation", Carbon, Vol. 38, No. 8, 2000, pp.1123-1128. https://doi.org/10.1016/S0008-6223(99)00239-0
  15. Behnood, A., and Gharehveran, M.M., "Morphology, Rheology, and Physical Properties of Polymer-modified Asphalt Binders", European Polymer Journal, Vol. 112, 2019, pp. 766-791. https://doi.org/10.1016/j.eurpolymj.2018.10.049
  16. Yang, J.Y., Park, J.H., Kuk, Y.S., Kim, B.S., and Seo, M.K., "OneStep Densification of Carbon/Carbon Composites Impregnated with Pyrolysis Fuel Oil-Derived Mesophase Binder Pitches", C-Journal of Carbon Research, Vol. 6, No. 1, 2020, pp. 5. https://doi.org/10.3390/c6010005
  17. Yang, J.Y., Kim, B.S., Park, S.J., Rhee, K.Y., and Seo, M.K., "Preparation and Characterization of Mesophase Formation of Pyrolysis Fuel Oil-derived Binder Pitches for Carbon Composites", Composites Part B, Vol. 165, 2019, pp. 467-472. https://doi.org/10.1016/j.compositesb.2019.01.102
  18. Sekhar, N.C., and Varghese, L.A., "Mechanical, Thermal, and Rheological Studies of Phenolic Resin Modified with Intercalated Graphite prepared Via Liquid Phase Intercalation", Polymer Testing, Vol. 79, 2019, pp. 106010. https://doi.org/10.1016/j.polymertesting.2019.106010
  19. Li, X., and Li, Q., "Rheological Properties and Carbonization of Coal-tar Pitch", Fuel, Vol. 75, No. 1, 1996, pp. 3-7. https://doi.org/10.1016/0016-2361(95)00190-5
  20. Khandare, P.M., Zondlo, J.W., Stansberry, P.B., and Stiller, A.H., "Rheological Investigations of Pitch Material Part II: Viscosity Measurement of A240 and ARA-24 Pitches using a High-temperature High-pressure Rheometer", Carbon, Vol. 38, No. 6, 2000, pp. 889-897. https://doi.org/10.1016/S0008-6223(99)00188-8
  21. Kundu, S., and Ogale, A.A., "Rheostructural Studies on a Synthetic Mesophase Pitch during Transient Shear Flow", Carbon, Vol. 44, No. 11, 2006, pp. 2224-2235. https://doi.org/10.1016/j.carbon.2006.02.041
  22. Nutz, M., Furdin, G., Medjahdi, G., Mareche, J.F., and Moreau, M., "Rheological Properties of Coal tar Pitches Containing Micronic Graphite Powders", Carbon, Vol. 35, No. 7, 1997, pp. 1023-1029.
  23. Yu, R., Liu, D., Lou, B., Zhu, W., Guo, S., Gong, X., Zhang, Z., Ye, J., and Zhu, C., "The Effect of Solvent Extraction on Petroleum Pitch Compositions and their Pyrolysis Behaviors", Fuel, Vol. 247, 2019, pp. 97-107. https://doi.org/10.1016/j.fuel.2019.03.041
  24. Dumont, M., Dourges, M.A., Pailler, R., and Bourrat, X., "Mesophase Pitches for 3D-carbon Fibre Preform Densification: Rheology and Processability", Fuel, Vol. 82, No. 12, 2003, pp. 1523-1529. https://doi.org/10.1016/S0016-2361(03)00039-5
  25. Miyajima, N., Akatsu, T., Ito, O., Sakurovs, R., Shimizu, S., Sakai M., Tanabe Y., and Yasuda E., "The Rheological Behavior during Carbonization of Iodine-treated Coal tar Pitch", Carbon, Vol. 39, No. 5, 2001, pp. 647-653. https://doi.org/10.1016/S0008-6223(00)00153-6
  26. Yang, X., and Frazier, C.E., "Influence of Organic Fillers on Rheological Behavior in Phenol-formaldehyde Adhesives", International Journal of Adhesion & Adhesives, Vol. 66, 2016, pp. 93-98. https://doi.org/10.1016/j.ijadhadh.2015.12.035
  27. Na, H.Y., Yeom, H.Y., Yoon, B.C., and Lee, S.J., "Cure Behavior and Chemorheology of Low Temperature Cure Epoxy Matrix Resin", Polymer(Korea), Vol. 38, No. 2, 2013, pp. 171-179.
  28. Rindusit, S., and Ishida, H., "Gelation Study of High Processability and High Reliability Ternary Systems based on Benzoxazine, Epoxy, and Phenolic Resins for an Application as Electronic Packaging Materials", Rheol Acta, Vol. 41, No. 1-2, 2002, pp. 1-9. https://doi.org/10.1007/s003970200000
  29. Dominguez, J.C., Alonso, M.V., Oliet, M., and Rodriguez, F., "Chemorheological Study of the Curing Kinetics of a Phenolic Resol Resin Gelled", European Polymer Journal, Vol. 46, No. 1, 2010, pp. 50-57. https://doi.org/10.1016/j.eurpolymj.2009.09.004