Acknowledgement
This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (grant No. 2015R1D1A1A01057433).
References
- Autuoro, J.M., Pirnie, S.P., and Carmichael, G.G. (2014). Long noncoding RNAs in imprinting and X chromosome inactivation. Biomolecules 4, 76-100. https://doi.org/10.3390/biom4010076
- Bach, D.H. and Lee, S.K. (2018). Long noncoding RNAs in cancer cells. Cancer Lett. 419, 152-166. https://doi.org/10.1016/j.canlet.2018.01.053
- Cabili, M.N., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A., and Rinn, J.L. (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 1915-1927. https://doi.org/10.1101/gad.17446611
- Chang, Y.N., Zhang, K., Hu, Z.M., Qi, H.X., Shi, Z.M., Han, X.H., Han, Y.W., and Hong, W. (2016). Hypoxia-regulated lncRNAs in cancer. Gene 575, 1-8. https://doi.org/10.1016/j.gene.2015.08.049
- Chatterjee, A., Stockwell, P.A., Ahn, A., Rodger, E.J., Leichter, A.L., and Eccles, M.R. (2017). Genome-wide methylation sequencing of paired primary and metastatic cell lines identifies common DNA methylation changes and a role for EBF3 as a candidate epigenetic driver of melanoma metastasis. Oncotarget 8, 6085-6101. https://doi.org/10.18632/oncotarget.14042
- Du, F., Guo, T., and Cao, C. (2020). Restoration of UPK1A-AS1 expression suppresses cell proliferation, migration, and invasion in esophageal squamous cell carcinoma cells partially by sponging microRNA-1248. Cancer Manag. Res. 12, 2653-2662. https://doi.org/10.2147/CMAR.S239418
- Elvidge, G.P., Glenny, L., Appelhoff, R.J., Ratcliffe, P.J., Ragoussis, J., and Gleadle, J.M. (2006). Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha, HIF-2alpha, and other pathways. J. Biol. Chem. 281, 15215-15226. https://doi.org/10.1074/jbc.M511408200
- Faghihi, M.A., Modarresi, F., Khalil, A.M., Wood, D.E., Sahagan, B.G., Morgan, T.E., Finch, C.E., St Laurent, G., 3rd, Kenny, P.J., and Wahlestedt, C. (2008). Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase. Nat. Med. 14, 723-730. https://doi.org/10.1038/nm1784
- Fiedler, J., Breckwoldt, K., Remmele, C.W., Hartmann, D., Dittrich, M., Pfanne, A., Just, A., Xiao, K., Kunz, M., Müller, T., et al. (2015). Development of long noncoding RNA-based strategies to modulate tissue vascularization. J. Am. Coll. Cardiol. 66, 2005-2015. https://doi.org/10.1016/j.jacc.2015.07.081
- Gomez-Maldonado, L., Tiana, M., Roche, O., Prado-Cabrero, A., Jensen, L., Fernandez-Barral, A., Guijarro-Munoz, I., Favaro, E., Moreno-Bueno, G., Sanz, L., et al. (2015). EFNA3 long noncoding RNAs induced by hypoxia promote metastatic dissemination. Oncogene 34, 2609-2620. https://doi.org/10.1038/onc.2014.200
- Guillaumet-Adkins, A., Richter, J., Odero, M.D., Sandoval, J., Agirre, X., Catala, A., Esteller, M., Prosper, F., Calasanz, M.J., Buno, I., et al. (2014). Hypermethylation of the alternative AWT1 promoter in hematological malignancies is a highly specific marker for acute myeloid leukemias despite high expression levels. J. Hematol. Oncol. 7, 4. https://doi.org/10.1186/1756-8722-7-4
- Guilleret, I., Yan, P., Grange, F., Braunschweig, R., Bosman, F.T., and Benhattar, J. (2002). Hypermethylation of the human telomerase catalytic subunit (hTERT) gene correlates with telomerase activity. Int. J. Cancer 101, 335-341. https://doi.org/10.1002/ijc.10593
- Hall, G.D., Weeks, R.J., Olsburgh, J., Southgate, J., Knowles, M.A., Selby, P.J., and Chester, J.D. (2005). Transcriptional control of the human urothelialspecific gene, uroplakin Ia. Biochim. Biophys. Acta 1729, 126-134. https://doi.org/10.1016/j.bbaexp.2005.04.004
- He, Y., Kong, F., Du, H., and Wu, M. (2014). Decreased expression of uroplakin Ia is associated with colorectal cancer progression and poor survival of patients. Int. J. Clin. Exp. Pathol. 7, 5031-5037.
- Hong, S.S., Lee, H., and Kim, K.W. (2004). HIF-1alpha: a valid therapeutic target for tumor therapy. Cancer Res. Treat. 36, 343-353. https://doi.org/10.4143/crt.2004.36.6.343
- Hu, S., Wang, X., and Shan, G. (2016). Insertion of an Alu element in a lncRNA leads to primate-specific modulation of alternative splicing. Nat. Struct. Mol. Biol. 23, 1011-1019. https://doi.org/10.1038/nsmb.3302
- Hu, Y., Liu, J., and Huang, H. (2013). Recent agents targeting HIF-1α for cancer therapy. J. Cell. Biochem. 114, 498-509. https://doi.org/10.1002/jcb.24390
- Huang, B., Song, J.H., Cheng, Y., Abraham, J.M., Ibrahim, S., Sun, Z., Ke, X., and Meltzer, S.J. (2016). Long non-coding antisense RNA KRT7-AS is activated in gastric cancers and supports cancer cell progression by increasing KRT7 expression. Oncogene 35, 4927-4936. https://doi.org/10.1038/onc.2016.25
- Iyer, M.K., Niknafs, Y.S., Malik, R., Singhal, U., Sahu, A., Hosono, Y., Barrette, T.R., Prensner, J.R., Evans, J.R., Zhao, S., et al. (2015). The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet. 47, 199-208. https://doi.org/10.1038/ng.3192
- Jiang, B.H., Rue, E., Wang, G.L., Roe, R., and Semenza, G.L. (1996). Dimerization, DNA binding, and transactivation properties of hypoxiainducible factor 1. J. Biol. Chem. 271, 17771-17778. https://doi.org/10.1074/jbc.271.30.17771
- Jones, P.A. and Takai, D. (2001). The role of DNA methylation in mammalian epigenetics. Science 293, 1068-1070. https://doi.org/10.1126/science.1063852
- Kanduri, C. (2016). Long noncoding RNAs: lessons from genomic imprinting. Biochim. Biophys. Acta 1859, 102-111. https://doi.org/10.1016/j.bbagrm.2015.05.006
- Ke, Q. and Costa, M. (2006). Hypoxia-inducible factor-1 (HIF-1). Mol. Pharmacol. 70, 1469-1480. https://doi.org/10.1124/mol.106.027029
- Kim, S., Lee, U.J., Kim, M.N., Lee, E.J., Kim, J.Y., Lee, M.Y., Choung, S., Kim, Y.J., and Choi, Y.C. (2008). MicroRNA miR-199a* regulates the MET protooncogene and the downstream extracellular signal-regulated kinase 2 (ERK2). J. Biol. Chem. 283, 18158-18166. https://doi.org/10.1074/jbc.M800186200
- Kimura, T., Jiang, S., Nishizawa, M., Yoshigai, E., Hashimoto, I., Nishikawa, M., Okumura, T., and Yamada, H. (2013). Stabilization of human interferon-α1 mRNA by its antisense RNA. Cell. Mol. Life Sci. 70, 1451-1467. https://doi.org/10.1007/s00018-012-1216-x
- Klose, R.J. and Bird, A.P. (2006). Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89-97. https://doi.org/10.1016/j.tibs.2005.12.008
- Kong, K.L., Kwong, D.L., Fu, L., Chan, T.H., Chen, L., Liu, H., Li, Y., Zhu, Y.H., Bi, J., Qin, Y.R., et al. (2010). Characterization of a candidate tumor suppressor gene uroplakin 1A in esophageal squamous cell carcinoma. Cancer Res. 70, 8832-8841. https://doi.org/10.1158/0008-5472.CAN-10-0779
- Kulshreshtha, R., Ferracin, M., Wojcik, S.E., Garzon, R., Alder, H., Agosto-Perez, F.J., Davuluri, R., Liu, C.G., Croce, C.M., Negrini, M., et al. (2007). A microRNA signature of hypoxia. Mol. Cell. Biol. 27, 1859-1867. https://doi.org/10.1128/MCB.01395-06
- Lauer, V., Grampp, S., Platt, J., Lafleur, V., Lombardi, O., Choudhry, H., Kranz, F., Hartmann, A., Wullich, B., Yamamoto, A., et al. (2020). Hypoxia drives glucose transporter 3 expression through hypoxia-inducible transcription factor (HIF)-mediated induction of the long noncoding RNA NICI. J. Biol. Chem. 295, 4065-4078. https://doi.org/10.1074/jbc.ra119.009827
- Lee, D.D., Leao, R., Komosa, M., Gallo, M., Zhang, C.H., Lipman, T., Remke, M., Heidari, A., Nunes, N.M., Apolonio, J.D., et al. (2019). DNA hypermethylation within TERT promoter upregulates TERT expression in cancer. J. Clin. Invest. 129, 223-229. https://doi.org/10.1172/JCI121303
- Lelli, A., Nolan, K.A., Santambrogio, S., Gonçalves, A.F., Schonenberger, M.J., Guinot, A., Frew, I.J., Marti, H.H., Hoogewijs, D., and Wenger, R.H. (2015). Induction of long noncoding RNA MALAT1 in hypoxic mice. Hypoxia (Auckl.) 3, 45-52. https://doi.org/10.2147/hp.s90555
- Li, T., Xiao, Y., and Huang, T. (2018). HIF-1α-induced upregulation of lncRNA UCA1 promotes cell growth in osteosarcoma by inactivating the PTEN/AKT signaling pathway. Oncol. Rep. 39, 1072-1080.
- Lin, J., Zhang, X., Xue, C., Zhang, H., Shashaty, M.G., Gosai, S.J., Meyer, N., Grazioli, A., Hinkle, C., and Caughey, J. (2015). The long noncoding RNA landscape in hypoxic and inflammatory renal epithelial injury. Am. J. Physiol. Renal Physiol. 309, F901-F913. https://doi.org/10.1152/ajprenal.00290.2015
- Lubelsky, Y. and Ulitsky, I. (2018). Sequences enriched in Alu repeats drive nuclear localization of long RNAs in human cells. Nature 555, 107-111. https://doi.org/10.1038/nature25757
- Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R., and Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275. https://doi.org/10.1038/20459
- Mercer, T.R., Dinger, M.E., and Mattick, J.S. (2009). Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10, 155-159. https://doi.org/10.1038/nrg2521
- Mimura, I., Hirakawa, Y., Kanki, Y., Kushida, N., Nakaki, R., Suzuki, Y., Tanaka, T., Aburatani, H., and Nangaku, M. (2017). Novel lnc RNA regulated by HIF-1 inhibits apoptotic cell death in the renal tubular epithelial cells under hypoxia. Physiol. Rep. 5, e13203. https://doi.org/10.14814/phy2.13203
- Nabilsi, N.H., Broaddus, R.R., and Loose, D.S. (2009). DNA methylation inhibits p53-mediated survivin repression. Oncogene 28, 2046-2050. https://doi.org/10.1038/onc.2009.62
- Penny, G.D., Kay, G.F., Sheardown, S.A., Rastan, S., and Brockdorff, N. (1996). Requirement for Xist in X chromosome inactivation. Nature 379, 131-137. https://doi.org/10.1038/379131a0
- Pollex, T. and Heard, E. (2012). Recent advances in X-chromosome inactivation research. Curr. Opin. Cell Biol. 24, 825-832. https://doi.org/10.1016/j.ceb.2012.10.007
- Scheuermann, J.C. and Boyer, L.A. (2013). Getting to the heart of the matter: long non-coding RNAs in cardiac development and disease. EMBO J. 32, 1805-1816. https://doi.org/10.1038/emboj.2013.134
- Schmitt, A.M. and Chang, H.Y. (2016). Long noncoding RNAs in cancer pathways. Cancer Cell. 29, 452-463. https://doi.org/10.1016/j.ccell.2016.03.010
- Schonrock, N., Harvey, R.P., and Mattick, J.S. (2012). Long noncoding RNAs in cardiac development and pathophysiology. Circ. Res. 111, 1349-1362. https://doi.org/10.1161/CIRCRESAHA.112.268953
- Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721-732. https://doi.org/10.1038/nrc1187
- Shih, J.W. and Kung, H.J. (2017). Long non-coding RNA and tumor hypoxia: new players ushered toward an old arena. J. Biomed. Sci. 24, 53. https://doi.org/10.1186/s12929-017-0358-4
- Smith, J., Sen, S., Weeks, R.J., Eccles, M.R., and Chatterjee, A. (2020). Promoter DNA hypermethylation and paradoxical gene activation. Trends Cancer 6, 392-406. https://doi.org/10.1016/j.trecan.2020.02.007
- Song, Y., Wang, H., Zou, X.J., Zhang, Y.X., Guo, Z.Q., Liu, L., Wu, D.H., and Zhang, D.Y. (2020). Reciprocal regulation of HIF-1α and Uroplakin 1A promotes glycolysis and proliferation in Hepatocellular Carcinoma. J. Cancer 11, 6737-6747. https://doi.org/10.7150/jca.48132
- Su, W., Xu, M., Chen, X., Chen, N., Gong, J., Nie, L., Li, L., Li, X., Zhang, M., and Zhou, Q. (2017). Long noncoding RNA ZEB1-AS1 epigenetically regulates the expressions of ZEB1 and downstream molecules in prostate cancer. Mol. Cancer 16, 142. https://doi.org/10.1186/s12943-017-0711-y
- Sun, J., Wang, X., Fu, C., Wang, X., Zou, J., Hua, H., and Bi, Z. (2016). Long noncoding RNA FGFR3-AS1 promotes osteosarcoma growth through regulating its natural antisense transcript FGFR3. Mol. Biol. Rep. 43, 427-436. https://doi.org/10.1007/s11033-016-3975-1
- Tang, Y., Cheung, B.B., Atmadibrata, B., Marshall, G.M., Dinger, M.E., Liu, P.Y., and Liu, T. (2017). The regulatory role of long noncoding RNAs in cancer. Cancer Lett. 391, 12-19. https://doi.org/10.1016/j.canlet.2017.01.010
- Tee, A.E., Liu, B., Song, R., Li, J., Pasquier, E., Cheung, B.B., Jiang, C., Marshall, G.M., Haber, M., Norris, M.D., et al. (2016). The long noncoding RNA MALAT1 promotes tumor-driven angiogenesis by up-regulating proangiogenic gene expression. Oncotarget 7, 8663-8675. https://doi.org/10.18632/oncotarget.6675
- Voellenkle, C., Garcia-Manteiga, J.M., Pedrotti, S., Perfetti, A., De Toma, I., Da Silva, D., Maimone, B., Greco, S., Fasanaro, P., Creo, P., et al. (2016). Implication of long noncoding RNAs in the endothelial cell response to hypoxia revealed by RNA-sequencing. Sci. Rep. 6, 24141. https://doi.org/10.1038/srep24141
- Wang, Y., Liu, X., Zhang, H., Sun, L., Zhou, Y., Jin, H., Zhang, H., Zhang, H., Liu, J., Guo, H., et al. (2014). Hypoxia-inducible lncRNA-AK058003 promotes gastric cancer metastasis by targeting γ-synuclein. Neoplasia 16, 1094-1106. https://doi.org/10.1016/j.neo.2014.10.008
- Wu, X.R., Kong, X.P., Pellicer, A., Kreibich, G., and Sun, T.T. (2009). Uroplakins in urothelial biology, function, and disease. Kidney Int. 75, 1153-1165. https://doi.org/10.1038/ki.2009.73
- Xue, M., Li, X., Li, Z., and Chen, W. (2014). Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion. Tumour Biol. 35, 6901-6912. https://doi.org/10.1007/s13277-014-1925-x
- Yap, K.L., Li, S., Munoz-Cabello, A.M., Raguz, S., Zeng, L., Mujtaba, S., Gil, J., Walsh, M.J., and Zhou, M.M. (2010). Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell 38, 662-674. https://doi.org/10.1016/j.molcel.2010.03.021
- Yu, T., Tang, B., and Sun, X. (2017). Development of inhibitors targeting hypoxia-inducible factor 1 and 2 for cancer therapy. Yonsei Med. J. 58, 489-496. https://doi.org/10.3349/ymj.2017.58.3.489
- Yu, W., Gius, D., Onyango, P., Muldoon-Jacobs, K., Karp, J., Feinberg, A.P., and Cui, H. (2008). Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451, 202-206. https://doi.org/10.1038/nature06468
- Yuan, S., Liu, Q., Hu, Z., Zhou, Z., Wang, G., Li, C., Xie, W., Meng, G., Xiang, Y., Wu, N., et al. (2018). Long non-coding RNA MUC5B-AS1 promotes metastasis through mutually regulating MUC5B expression in lung adenocarcinoma. Cell Death Dis. 9, 450. https://doi.org/10.1038/s41419-018-0472-6
- Zhang, P., Dong, Q., Zhu, H., Li, S., Shi, L., and Chen, X. (2019). Long noncoding antisense RNA GAS6-AS1 supports gastric cancer progression via increasing GAS6 expression. Gene 696, 1-9. https://doi.org/10.1016/j.gene.2018.12.079
- Zheng, Y., Wang, D.D., Wang, W., Pan, K., Huang, C.Y., Li, Y.F., Wang, Q.J., Yuan, S.Q., Jiang, S.S., Qiu, H.B., et al. (2014). Reduced expression of uroplakin 1A is associated with the poor prognosis of gastric adenocarcinoma patients. PLoS One 9, e93073. https://doi.org/10.1371/journal.pone.0093073
- Zhou, C., Ye, L., Jiang, C., Bai, J., Chi, Y., and Zhang, H. (2015). Long noncoding RNA HOTAIR, a hypoxia-inducible factor-1α activated driver of malignancy, enhances hypoxic cancer cell proliferation, migration, and invasion in non-small cell lung cancer. Tumour Biol. 36, 9179-9188. https://doi.org/10.1007/s13277-015-3453-8
- Zhu, G., Wang, S., Chen, J., Wang, Z., Liang, X., Wang, X., Jiang, J., Lang, J., and Li, L. (2017). Long noncoding RNA HAS2-AS1 mediates hypoxiainduced invasiveness of oral squamous cell carcinoma. Mol. Carcinog. 56, 2210-2222. https://doi.org/10.1002/mc.22674
- Zhu, H., Tang, Y., Zhang, X., Jiang, X., Wang, Y., Gan, Y., and Yang, J. (2015). Downregulation of UPK1A suppresses proliferation and enhances apoptosis of bladder transitional cell carcinoma cells. Med. Oncol. 32, 84. https://doi.org/10.1007/s12032-015-0541-y
Cited by
- Biphasic Regulation of Mitogen-Activated Protein Kinase Phosphatase 3 in Hypoxic Colon Cancer Cells vol.44, pp.10, 2020, https://doi.org/10.14348/molcells.2021.0093
- The regulatory role of antisense lncRNAs in cancer vol.21, pp.1, 2020, https://doi.org/10.1186/s12935-021-02168-4