References
- Domo, Inc. (2019). Data Never Sleeps 6.0. https://www.domo.com/learn/data-never-sleeps-6
- F. T. S. Chan & N. Kumar. (2007). Global Supplier Development Considering Risk Factors using Fuzzy Extended AHP-based Approach. Original Research Article Omega, 35(4), 417-431.
- C. Lin & P. J. Hsieh. (2004). A Fuzzy Decision Support System for Strategic Portfolio Management. Decision Support Systems, 38(2004), 383-398. https://doi.org/10.1016/S0167-9236(03)00118-0
- B. Kaluza. (2016). Machine Learning in Java. Seoul: Acorn.
- C. M. Kwon. (2019). Python Machine Learning Perfect Guide. Paju: Wikibooks.
- S. K. Gorakala. (2017). Building Recommendation Engines. Seoul: Acorn.
- S. H. Park, D. H. Kim, H. J. Cho & J. W. Kim. (2019). Music Therapy Counseling Recommendation Model Based on Collaborative Filtering. Journal of the Korea Convergence Society, 10(9), 31-36.
- S. J. Park, Y. M. Kim & J. J. Ahn. (2019). Development of Product Recommender System using Collaborative Filtering and Stacking Model. Journal of Convergence for Information Technology, 9(6), 83-90. https://doi.org/10.22156/CS4SMB.2019.9.6.083
- B. S. Kim. (2017). How does Naver AI Recommended System 'AiRs' Operate? Collaborative Filtering?. Chosunbiz. http://biz.chosun.com/site/data/html_dir/2017/04/08/2017040800549
- S. J. Lee. (2019). Since I introduced AI to Naver news, page views have increased. Business Watch. https://m.post.naver.com/viewer/postView.nhn?volumeNo=18935104&memberNo=997329&vType=VERTICAL
- S. Wang, C. Li, K. Zhao & H. Chen. (2017). Learning to Context-aware Recommend with Hierarchical Factorization Machines. Information Sciences, 409-410(2017), 121-138. https://doi.org/10.1016/j.ins.2017.05.015
- M. Ahmed, M. T. Imtiaz & R. Khan. (2018). Movie Recommendation System using Clustering and Pattern Recognition Network. 2018 IEEE 8th Annual Computing and Communication Workshop and Conference, 1-5.
- Y. S. Jeong. (2019). Machine Learning Based Domain Classification for Korean Dialog System. Journal of Convergence for Information Technology, 9(8), 1-8. https://doi.org/10.22156/CS4SMB.2019.9.8.001
- X. H. Ding, Q. Xie, Y. J. Jang & T. S. Yun. (2019). Usability Evaluation Model for Locomotion Technology in VR Space. Journal of the Korea Convergence Society, 10(9), 1-9. https://doi.org/10.15207/JKCS.2019.10.9.001
- E. Kinoshita & T. Oya. (2012). Strategic Decision-making Technique AHP. Seoul: Cheongram.
- R. S. Chaulagain, S. Pandey, S. R. Basnet & S. Shakya. (2017). Cloud based Web Scraping for Big Data Applications. 2017 IEEE International Conference on Smart Cloud, 1-6.
- K. Kato. (2018). Web Crawling and Scraping with Python. Paju: Wikibooks.
- K. Hikodukue. (2017). Introduction to the Practical Development of Machine Learning and Deep Learning using Python. Paju: Wikibooks.
- T. Hope, Y. S. Resheff & I. Lieder. (2018). Learning TensorFlow. Seoul: Hanbit Media.
- S. Y. Kim & Y. J. Jung. (2017). Machine Learning for the First Time. Seoul: Hanbit Media.
- N. Buduma. (2018). Fundamentals of Deep Learning. Seoul: Hanbit Media.
- F. Yin, Y. Wang, X. Pan & P. Su. (2018). A Word based Review Vector Method for Sentiment Analysis of Movie Reviews Exploring the Applicability of the Movie Reviews. 2018 3rd International Conference on Computational Intelligence and Applications, 1-6.
- Y. C. Yoon & J. W. Lee. (2018). Movie Recommendation using Metadata based Word2vec Algorithm. 2018 International Conference on Platform Technology and Service, 1-5.
- S. K. Reddy, V. Swaminathan & C. M. Motley. (1998). Exploring the Determinants of Broadway Show Success. Journal of Marketing Research, 17(6), 296-315.
- Kakao Corp. (2019). Daum Movie. https://movie.daum.net
- A. C. Muller, S. Guido. (2019). Introduction to Machine Learning with Python. Seoul: Hanbit Media.
- T. Okatani. (2017). Getting started with Deep Learning. Paju: Jpub.