DOI QR코드

DOI QR Code

Comparison of Quantitative Relationship between Real-Time PCR and Acid Fast Bacilli Staining for Diagnosis of Pulmonary Tuberculosis

폐결핵 진단을 위한 실시간중합효소연쇄반응과 AFB 염색진단검사의 정량적 연관성 비교

  • Jung, Taewon (Department of Laboratory Medicine, Samsung Medical Center) ;
  • Kim, Sang-Ha (Department of Laboratory Medicine, Konyang University Hospital) ;
  • Kim, Sunghyun (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan) ;
  • Choi, Jae-Sun (Department of Biomedical Laboratory Science, Far East University) ;
  • Kim, Young-Kwon (Department of Health Sciences, The Graduate School of Konyang University)
  • 정태원 (삼성서울병원 진단검사의학과) ;
  • 김상하 (건양대학교병원 진단검사의학과) ;
  • 김성현 (부산가톨릭대학교 보건과학대학 임상병리학과) ;
  • 최재선 (극동대학교 임상병리학과) ;
  • 김영권 (건양대학교 보건복지대학원 보건학과)
  • Received : 2020.09.05
  • Accepted : 2020.09.29
  • Published : 2020.12.31

Abstract

This study investigates the association of the AFB stain with the cycle threshold (Ct) value of the Cobas TaqMan MTB test (CTM test, Roche Diagnostics, Basel, Switzerland), and it establishes the base data for semi-quantitative identification of M. tuberculosis by the Ct value. CTM test were simultaneously conducted on 8,389 specimens submitted to the Samsung Medical Center from January 2015 to December 2015, and the results were analyzed and compared retrospectively investigates the association of the AFB stain with the Ct value of the CTM test, and it establishes the base data for semi-quantitative identification of M. tuberculosis by the Ct value. The Ct values for 135 positive specimens of the CTM were inversely correlated with the AFB stain (rs=-0.545, P<0.01). When the Ct value of the CTM test and the time to positivity (TTP) of the mycobacteria cultures were verified based on the AFB stain, they were found to have a positive correlation (rs=0.136, P<0.01). The negative correlation between the CTM test and the AFB stain grade was demonstrated. The clinical significance was verified by applying these criteria to the clinical results. The semi-quantitative criteria of this study can be used to facilitate the rapid isolation of patients with active tuberculosis and infection control in the hospital.

본 연구는 Cobas TaqMan MTB 검사(CTM test, Roche Diagnostics, Basel, Switzerland)와 항산균 도말염색검사의 연관성을 확인하고 그에 따른 반정량적 판정기준을 확립하고자 하였다. 2015년 1월부터 2015년 12월까지 삼성서울병원 진단검사의학과에 의뢰된 8,389개의 검체에 대해 결핵균 도말 검사, 배양 검사 및 CTM 검사를 동시에 실시하였으며, 그 결과를 분석하여 AFB 염색과주기의 연관성을 후향적으로 분석하였다. CTM 검사의 임계 값(Ct)값으로, 결핵균 검출방법의 반정량적 판정기준을 설정 하였다. CTM 검사의 135개의 양성 표본에 대한 Ct값은 항산균 도말염색과 반비례적 상관관계가 있었다(rs=-0.545, P<0.01). CTM 검사와 항산균 염색 등급의 음의 상관관계가 입증되었으며, 임상 기준에 이러한 기준을 적용하여 임상적 의의를 검증하였다. 이 연구의 반정량적 기준은 병원에서 활동성 결핵 및 감염을 일으킬 수 있는 환자의 빠른 진단의 판단에 도움이 될 것으로 사료된다.

Keywords

References

  1. Joint committee for the revision of Korean guidelines for tuberculosis. Korean guidelines for tuberculosis. 3rd ed. Cheongju: KCDC; 2017. p1-232.
  2. WHO. Global tuberculosis report 2018 [Internet]. Geneva: WHO; 2020 [cited 2020 Sep 27]. Available from: https://apps.who.int/iris/handle/10665/274453
  3. Dye C, Williams BG. The population dynamics and control of tuberculosis. Science. 2010;328:856-861. https://doi.org/10.1126/science.1185449
  4. Frieden TR, editor. Toman's tuberculosis: case detection, treatment and monitoring, 2nd ed [Internet]. Geneva: WHO; 2020 [cited by 2020 Sep 27] Available from: https://tbrieder.org/publications/books_english/toman_2.pdf
  5. Brandli O. The clinical presentation of tuberculosis. Respiration. 1998;65:97-105. https://doi.org/10.1159/000029238
  6. Armand S, Vanhuls P, Delcroix G, Courcol R, Lemaitre N. Comparison of the Xpert MTB/RIF test with an IS6110-TaqMan real-time PCR assay for direct detection of Mycobacterium tuberculosis in respiratory and nonrespiratory specimens. J Clin Microbiol. 2011;49:1772-1776. https://doi.org/10.1128/JCM.01335-13
  7. KCDC. Annual report on the notified tuberculosis in Korea 2018 [Internet]. Cheongju: KCDC; 2020 [cited by 2020 Sep 27]. Available from: https://www.cdc.go.kr/CDC/cms/cmsFileSeDownload.jsp?fid=31&cid
  8. Lee H, Park KG, Lee G, Park J, Park YG, Park YJ. Assessment of the quantitative ability of AdvanSure TB/NTM real-time PCR in respiratory specimens by comparison with phenotypic methods. Ann Lab Med. 2014;34:51-55. https://doi.org/10.3343/alm.2014.34.1.51
  9. Blakemore R, Nabeta P, Davidow AL, Vadwai V, Tahirli R, Munsamy V, et al. A multisite assessment of the quantitative capabilities of the Xpert MTB/RIF assay. Am J Respir Crit Care Med. 2011;184:1076-1084. https://doi.org/10.3343/alm.2014.34.1.51
  10. Theron G, Pinto L, Peter J, Mishra HK, Mishra HK, van Zyl-Smit R, et al. The use of an automated quantitative polymerase chain reaction (Xpert MTB/RIF) to predict the sputum smear status of tuberculosis patients. Clin Infect Dis. 2012;54:384-388. https://doi.org/10.1093/cid/cir824
  11. Koh WJ, Yu CM, Suh GY, Chung MP, Kim H, Kwon OJ, et al. Pulmonary TB and NTM lung disease: comparison of characteristics in patients with AFB smear-positive sputum. Int J Tuberc Lung Dis. 2006;10:1001-1007.
  12. Marlowe EM, Novak-Weekley SM, Cumpio J, Sharp SE, Momeny MA, Babst A, et al. Evaluation of the Cepheid Xpert MTB/RIF assay for direct detection of Mycobacterium tuberculosis complex in respiratory specimens. J Clin Microbiol. 2011;49:1621-1623. https://doi.org/10.1128/JCM.02214-10
  13. Long R, Ellis E. Introducing the sixth edition of the Canadian Tuberculosis Standards. Can J Infect Dis Med Microbiol. 2007;18: 283-284. https://doi.org/10.1155/2007/628347
  14. Grant T. How should laboratories measure mycobacterial load? S Afr Resp J. 2015;21:54. https://doi.org/10.7196/10.2015.v21i3.54
  15. Brodie D, Schluger NW. The diagnosis of tuberculosis. Clin Chest Med. 2005;26:247-271. https://doi.org/10.1016/j.ccm.2005.02.012
  16. Han YM, Kim HS, Kim CH, Kang HJ, Lee KM. Analysis of patients with positive acid-fast bacilli culture and negative T-SPOT.TB results. Korean J Lab Med. 2010;30:414-419. https://doi.org/10.3343/kjlm.2010.30.4.414
  17. Huh HJ, Koh WJ, Song DJ, Ki CS, Lee NY. Evaluation of the Cobas TaqMan MTB test for the detection of Mycobacterium tuberculosis complex according to acid-fast-bacillus smear grades in respiratory specimens. J Clin Microbiol. 2015;53:696-698. https://doi.org/10.1128/JCM.02630-14
  18. Laraque F, Griggs A, Slopen M, Munsiff SS. Performance of nucleic acid amplification tests for diagnosis of tuberculosis in a large urban setting. Clin Infect Dis. 2009;49:46-54. https://doi.org/10.1086/599037
  19. Gillespie SH, Sabiiti W, Oravcova K. Mycobacterial load assay. Methods Mol Biol. 2017;1616:89-105. https://doi.org/10.1007/978-1-4939-7037-7_5
  20. CAP. 2017 nucleic acid amplification of Mycobacterium tuberculosis. Survey results report. Northfield: CAP; 2017. p5-6.
  21. Bloemberg GV, Voit A, Ritter C, Deggim V, Bottger EC. Evaluation of Cobas TaqMan MTB for direct detection of the Mycobacterium tuberculosis complex in comparison with Cobas Amplicor MTB. J Clin Microbiol. 2013;51:2112-2117. https://doi.org/10.1128/JCM.00142-13
  22. Behr MA, Warren SA, Salamon H, Hopewell PC, Ponce de Leon A, Daley CL, et al. Transmission of Mycobacterium tuberculosis from patients smear-negative for acid-fast bacilli. Lancet. 1999;353:444-449. https://doi.org/10.1016/s0140-6736(98)03406-0
  23. Lee MR, Chung KP, Wang HC, Lin CB, Y CJ, Lee JJ, et al. Evaluation of the Cobas TaqMan MTB real-time PCR assay for direct detection of Mycobacterium tuberculosis in respiratory specimens. J Clin Microbiol. 2013;62;1160-1164. https://doi.org/10.1099/jmm.0.052043-0