DOI QR코드

DOI QR Code

A Study of Hazard Analysis and Monitoring Concepts of Autonomous Vehicles Based on V2V Communication System at Non-signalized Intersections

비신호 교차로 상황에서 V2V 기반 자율주행차의 위험성 분석 및 모니터링 컨셉 연구

  • Baek, Yun-soek (Cooperative autonomous Vehicle Research Center, Korea Automotive Technology Institute) ;
  • Shin, Seong-geun (Cooperative autonomous Vehicle Research Center, Korea Automotive Technology Institute) ;
  • Ahn, Dae-ryong (Cooperative autonomous Vehicle Research Center, Korea Automotive Technology Institute) ;
  • Lee, Hyuck-kee (Cooperative autonomous Vehicle Research Center, Korea Automotive Technology Institute) ;
  • Moon, Byoung-joon (Automated Vehicle Division, Korea Automobile Testing & Research Institute, Korea Transportation Safety Authority) ;
  • Kim, Sung-sub (Automated Vehicle Division, Korea Automobile Testing & Research Institute, Korea Transportation Safety Authority) ;
  • Cho, Seong-woo (Automated Vehicle Division, Korea Automobile Testing & Research Institute, Korea Transportation Safety Authority)
  • 백윤석 (한국자동차연구원 자율협력주행연구센터) ;
  • 신성근 (한국자동차연구원 자율협력주행센터) ;
  • 안대룡 (한국자동차연구원 자율협력주행센터) ;
  • 이혁기 (한국자동차연구원 자율협력주행센터) ;
  • 문병준 (한국교통안전공단 자동차안전연구원 자율주행실) ;
  • 김성섭 (한국교통안전공단 자동차안전연구원 자율주행실) ;
  • 조성우 (한국교통안전공단 자동차안전연구원 자율주행실)
  • Received : 2020.11.06
  • Accepted : 2020.11.26
  • Published : 2020.12.31

Abstract

Autonomous vehicles are equipped with a wide rage of sensors such as GPS, RADAR, LIDAR, camera, IMU, etc. and are driven by recognizing and judging various transportation systems at intersections in the city. The accident ratio of the intersection of the autonomous vehicles is 88% of all accidents due to the limitation of prediction and judgment of an area outside the sensing distance. Not only research on non-signalized intersection collision avoidance strategies through V2V and V2I is underway, but also research on safe intersection driving in failure situations is underway, but verification and fragments through simple intersection scenarios Only typical V2V failures are presented. In this paper, we analyzed the architecture of the V2V module, analyzed the causal factors for each V2V module, and defined the failure mode. We presented intersection scenarios for various road conditions and traffic volumes. we used the ISO-26262 Part3 Process and performed HARA (Hazard Analysis and Risk Assessment) to analyze the risk of autonomous vehicle based on the simulation. We presented ASIL, which is the result of risk analysis, proposed a monitoring concept for each component of the V2V module, and presented monitoring coverage.

자율주행차는 GPS 및 레이더, 라이다, 카메라, IMU 등 다수의 센서가 장착되어 도심 교차로 주행 환경에서 다양한 교통체계를 인지하고 판단하여 주행하지만 장착된 센서의 감지 거리를 벗어나는 영역에 대한 예측 및 판단의 한계 등으로 자율주행차의 교차로 사고 비율은 전체 사고의 88%로 사고 비율이 높다. 따라서 ITS 도입으로 V2V, V2I를 통한 비신호 교차로 사고 회피 전략 연구가 진행되고 있을 뿐만 아니라 고장 상황에서 안전한 교차로 주행에 대한 연구도 진행되고 있지만 단순한 교차로 시나리오를 통한 검증과 단편적인 V2V 고장만을 제시하고 있다. 본 논문에서는 V2V 모듈의 아키텍쳐를 분석하여 V2V 모듈별 위험 요인을 분석하여 고장모드를 정의하였다. 또한 다양한 도로 조건 및 교통량에 따라 교차로 시나리오를 제시하여 ISO-26262 Part3 프로세스를 활용하여 HARA를 수행하여 자율주행차의 오작동에 대해 시뮬레이션 기반 위험성을 분석하여 ASIL을 제시하였다. V2V 모듈의 각 컴포넌트별 모니터링 컨셉을 제안하였고 시뮬레이션을 통해 모니터링 커버리지를 제시하였다.

Keywords

Acknowledgement

본 연구는 국토교통부 및 국토교통과학기술진흥원의 연구비지원(20PQOW-B152473-02)으로 수행하였습니다.

References

  1. Ahn D., Shin S., Baek Y. and Lee H.(2018), "Hazard Analysis of Autonomous Vehicle due to V2I Malfunction," Journal of the Korea Institute of Intelligent Transport System, vol. 18, no. 6, pp.251-261.
  2. Au T. C., Fok C. L., Vishwanath S., Julien C. and Stone P.(2012), "Evasion planning for autonomous vehicles at intersections," In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp.1541-1546.
  3. Germbek O., Kurzhanskiy A. A., Medury A., Varaiya P. and Yu M.(2018), Introducing an Intelligent Intersection, ITS-Berkeley.
  4. IEC 61508-2(2010), Functional safety of electrical/electronic/programmable electronic safety-related systems-Part 2: Requirements for electrical/electronic/programmable electronic safety-related systems.
  5. ISO-26262(2011), Road vehicles-Functional safety-Part5: Product development at the hardware level.
  6. ISO-26262(2018), Road vehicles-Functional safety-Part3: Concept Phase.
  7. Kim D. B., Yun K. D., Park H. S., Ha Y. S. and Park J. C.(2016), "A Case Study on Speed Analysis of the rear-end Collision Accident," Transactions of KSAE, vol. 24, no. 6, pp.724-729. https://doi.org/10.7467/KSAE.2016.24.6.724
  8. Kowshik H., Caveney D. and Kumar P. R.(2011), "Provable system wide safety in intelligent intersections," IEEE Transactions on Vehicular Technology, vol. 60, no. 3, pp.804-818. https://doi.org/10.1109/TVT.2011.2107584
  9. Lei C.(2015), "Cooperative Intersection Management: A Survey," IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 2, pp.570-586. https://doi.org/10.1109/TITS.2015.2471812
  10. SAE J2735(2016), Dedicated Short Range Communications (DSRC) Message Set Dictionary.
  11. SAE J2980(2015), Considerations for ISO 26262 ASIL Hazard Classification.
  12. Vladimir S., Schiller E. M. and Papatriantafilou M.(2017), "Distributed Algorithm for Collision Avoidance at Road Intersections in the Presence of Communication Failures," IEEE Intelligent Vehicles Symposium (IV).
  13. Yi W.(2017), "A New Congestion Control Algorithm for Vehicle to Vehicle Safety Communications," Journal of the Korea Academia-Industrial Cooperation Society, vol. 18, no. 5, pp.125-132. https://doi.org/10.5762/KAIS.2017.18.5.125