DOI QR코드

DOI QR Code

Assessment of Livestock Infectious Diseases Exposure by Analyzing the Livestock Transport Vehicle's Trajectory Using Big Data

빅데이터 기반 가축관련 운송차량 이동경로 분석을 통한 가축전염병 노출수준 평가

  • 정희현 (서울시립대학교 교통공학과) ;
  • 홍정열 (서울시립대학교 교통공학과) ;
  • 박동주 (서울시립대학교 교통공학과)
  • Received : 2020.10.25
  • Accepted : 2020.11.25
  • Published : 2020.12.31

Abstract

With the worldwide spread of African swine fever, interest in livestock epidemics is growing. Livestock transport vehicles are the main cause of the spread of livestock epidemics, but no empirical quarantine procedures and standards related to the mobility of livestock transport vehicles in South Korea. This study extracted livestock-related vehicles' trajectory by utilizing the facility visit history data from the Korea Animal Health Integrated System and the DTG (Digital Tachograph) data from the Korea Transportation Safety Authority and presented them as exposure indexes aggregating the link-time occupancy of each vehicle. As a result, a total of 274,519 livestock-related vehicle trajectories were extracted, and exposure values by link and zone were quantitatively derived. Through this study, it is expected that prior monitoring of livestock transport vehicles and the establishment of post-disaster prevention policies would be provided.

아프리카 돼지 열병의 세계적인 확산과 함께 가축전염병에 대한 관심이 증가하고 있다. 가축관련 운송차량은 가축전염병 확산의 주요 원인으로 제기되고 있으나 국내에서는 가축관련 운송차량의 이동성과 관련한 실증적인 방역절차와 기준이 마련되지 않고 있는 실정이다. 이에 본 연구는 국가가축방역시스템의 축산시설 방문이력 데이터와 한국교통안전공단의 DTG(Digital Tachograph) 데이터를 활용하여 가축관련 운송차량이 이용한 도로이용정보를 추출하고, 각 차량의 링크별 점유시간을 집계하여 노출도 지표로 제시하였다. 총 274,519행의 가축관련 운송차량의 통행궤적이 추출되었으며 링크별, 존별 노출도를 정량적으로 도출하였다. 본 연구를 통해 가축관련 운송차량의 사전 모니터링 및 사후 방역방침 수립이 가능할 것으로 기대된다.

Keywords

References

  1. Gho K.(2018), Livestock infectious diseases, Korea Institute of S&T Evaluation and Planning.
  2. Guinat C., Relun A., Wall B., Morris A., Dixon L. and Pfeiffer D. U.(2016), "Exploring pig trade patterns to inform the design of risk-based disease surveillance and control strategies," Scientific Reports, vol. 6, no. 1, pp.1-11. https://doi.org/10.1038/s41598-016-0001-8
  3. Horst H. S.(1998), Risk and economic consequences of contagious animal disease introduction, Master's Thesis, Wageningen University, p.159.
  4. Jeong M. J., Jang I. H. and Choe Y. C.(2019), "Network Analysis of Swine Farms and Slaughters: Based on Automobile GPS Data," The Korean Cartographic Association, vol. 19, no. 1, pp.69-79. https://doi.org/10.16879/jkca.2019.19.1.069
  5. Korea Law Information Center, https://www.law.go.kr/LSW/admRulLsInfoP.do?admRulSeq=2100000182438
  6. Lee G. J., Pak S. I., Lee K. N., Kim H. Y., Park J. H. and Hong S.(2018), "Relationship Between Degree Centrality of Livestock Facilities in Vehicle Movement Network and Outbreak of Animal Infectious Disease," Journal of the Korea Academia-Industrial Cooperation Society, vol. 19, no. 12, pp.353-362. https://doi.org/10.5762/KAIS.2018.19.12.353
  7. Lowe J., Gauger P., Harmon K., Zhang J., Connor J., Yeske P. and Main R.(2014), "Role of transportation in spread of porcine epidemic diarrhea virus infection, United States," Emerging Infectious Diseases, vol. 20, no. 5, p.872. https://doi.org/10.3201/eid2005.131628
  8. Mansour S. M., Ali H., Chase C. C. and Cepica A.(2015), "Loop-mediated isothermal amplification for diagnosis of 18 World Organization for Animal Health (OIE) notifiable viral diseases of ruminants, swine and poultry," Animal Health Research Reviews, vol. 16, no. 2, pp.89-106. https://doi.org/10.1017/S1466252315000018
  9. Noh S. H.(2015), 2014/2015 Report on epidemiological Investigation of Foot-and-mouth Disease, Animal and Plant Quarantine Agency, pp.29-36.
  10. Paju City(2020), White Paper on African Swine Fever in Paju City, pp.26-27.