References
- C. H. Jeong, 1st Author et al. (2009). Phenolic ontent, Antioxidant Effect and Acetylcholinesterase Inhibitory Activity of Korean Commercial Green, Puer, Oolong, and Black Teas. Kor J Food Preserv. 16(1), 230-237.
- H.U. Gali, E.M. Perchellet, X. M Gao, J. J. Karchesy, J. P. Perchellet. (1994). Comparison of the inhibitory effects of monomeric, dimeric, and trimeric procyanidins on the biochemical markers of skin tumor promotion in mouse epidermis in vivo. Planta Med. 60(3), 235-239. https://doi.org/10.1055/s-2006-959466
- J. Castillo, 1st Author et al. (2000). Antioxidant activity and radioprotective effects against chromosomal damage induced in vivo by X-rays of flavan-3-ols (Procyanidins) from grape seeds (Vitis vinifera): comparative study versus other phenolic and organic compounds. J Agric Food Chem. 48(5), 1738-1745. https://doi.org/10.1021/jf990665o
- B. P. Gaire, 1st Author et al. (2013). Terminalia chebula extract protects OGD-R induced PC12 cell death and inhibits lps induced microglia activation. Molecules. 18(3), 3529-3542. https://doi.org/10.3390/molecules18033529
- A. Sarvazyan, O. Rudenko, S Aglyamov, S Emelianov. (2014). Muscle as a molecular machine for protecting joints and bones by absorbing mechanical impacts. Med Hypotheses. 83(1), 6-10. https://doi.org/10.1016/j.mehy.2014.04.020
- S. K. Powers, G.S. Lynch, K.T. Murphy, M.B. Reid, I. Zijdewind. (2016). Disease-Induced Skeletal Muscle Atrophy and Fatigue. Med Sci Sport Exer. 48(11), 2307-2319. https://doi.org/10.1249/MSS.0000000000000975
- F. Mourkioti, N. Rosenthal. (2005). IGF-1, inflammation and stem cells: interactions during muscle regeneration. Trends Immunol. 26(10), 535-542. https://doi.org/10.1016/j.it.2005.08.002
- M. D. Grounds. (1999). Muscle regeneration: molecular aspects and therapeutic implications. Curr Opin Neurol. 12(5), 535-543. https://doi.org/10.1097/00019052-199910000-00007
- D. P. Zipes, J. Jalife, G. Petrone, P. Punjabi. (2015). Cardiac Electrophysiology: From Cell to Bedside, 6th edition. Amsterdam : Elsevier.
- P. Menasche, 1st Author et al. (2001). Myoblast transplantation for heart failure. Lancet. 357(9252), 279-280. https://doi.org/10.1016/S0140-6736(00)03617-5
- H.C. Jang, (2018). Korean SSG How to Diagnose Sarcopenia in Korean Older Adults? Ann Geriatr Med Res. 22(2), 73-79. https://doi.org/10.4235/agmr.2018.22.2.73
- R. Dodds, A. A. Sayer. (2016). Sarcopenia and frailty: new challenges for clinical practice. Clin Med. 16(5), 455-458. https://doi.org/10.7861/clinmedicine.16-5-455
- E. Elster, T. Riall, S. Taylor, S. Vickers, R. Martin, W. Pories. (2016). Inclusion of Sarcopenia Outperforms the Modified Frailty Index in Predicting 1-Year Mortality among 1,326 Patients Undergoing Gastrointestinal Surgery for a Malignant Indication Discussion. J Am Coll Surgeons. 222(4), 397-407. https://doi.org/10.1016/j.jamcollsurg.2015.12.020
- K. M. Choi. (2016). Sarcopenia and sarcopenic obesity. Kor J Intern Med. 31(6), 1054-1060. https://doi.org/10.3904/kjim.2016.193
- N. Binkley, B. Buehring. (2009). Beyond FRAX (R): It's Time to Consider "Sarco-Osteopenia". J Clin Densitom. 12(4), 413-416. https://doi.org/10.1016/j.jocd.2009.06.004
- J. E. Morley. (2008). Sarcopenia: Diagnosis and treatment. J Nutr Health Aging. 12(7), 452-456. https://doi.org/10.1007/BF02982705
- R. Simons, R. Andel. (2006). The effects of resistance training and walking on functional fitness in advanced old age. J Aging Health. 18(1), 91-105. https://doi.org/10.1177/0898264305281102
- F. A. Alsolmei, H. W. Li, S. L Pereira, P. Krishnan, P. W. Johns, R. A. Siddiqui. (2019). Polyphenol-Enriched Plum Extract Enhances Myotubule Formation and Anabolism while Attenuating Colon Cancer-induced Cellular Damage in C2C12 Cells. Nutrients. 11(5), 1077. https://doi.org/10.3390/nu11051077
- I. Y. Kim, C. K. Zhoh, S. R. Han, Y. B. Bang, R. Y. Li. (2013). Anti-oxidative Activity and Moisturizing Effect of Fermented Puer Tea Extract. J Kor Applied Science & Technology. 30(2), 272-279.
- T. B. Napotnik, M. Rebersek, P. T. Vernier, B. Mali, D. Miklavcic. (2016). Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): A systematic review. Bioelectrochemistry. 110, 1-12. https://doi.org/10.1016/j.bioelechem.2016.02.011
- O. J. Kang. Isolation and Identification of Yeast Strain from Fermented Tea. Kor J food & cookery science. 24(1), 11-15.
- X. M. Zang. (1986). Bonchogangmogseub-yu. Hongkong : Commercial Press.
- Y. H. Chung, M. K. Shin. (2005). A Study on the Physicochemical Properties of Korean Teas according to Degree of Fermentation. The Korean Society of Food and Nutrition. 18(1), 94-101.
- Y. Oi, I. C. Hou, H. Fujita, K. Yazawa. (2012). Antiobesity Effects of Chinese Black Tea (Pu-erh Tea) Extract and Gallic Acid. Phytother Res. 26(4), 475-481. https://doi.org/10.1002/ptr.3602
- H. J. Bae, J. H. Kim (2020). Green tea extract containing enhanced levels of epimerized catechins attenuates scopolamine-induced memory impairment in mice. Journal of Ethnopharmacology. 258, 112923. https://doi.org/10.1016/j.jep.2020.112923
- Y. Rolland, 1st Author et al. (2008). Sarcopenia: Its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging. 12(7), 433-450. https://doi.org/10.1007/BF02982704
- H. K. Kamel, D. Maas, E. H. Duthie. (2002). Role of hormones in the pathogenesis and management of sarcopenia. Drug Aging. 19(11), 865-877. https://doi.org/10.2165/00002512-200219110-00004
- C. Y. Wang, L. Bai. (2012). Sarcopenia in the elderly: Basic and clinical issues. Geriatr Gerontol Int. 12(3), 388-396. https://doi.org/10.1111/j.1447-0594.2012.00851.x
- M. Maggio, F. Lauretani, G. P. Ceda. (2013). Sex hormones and sarcopenia in older persons. Curr Opin Clin Nutr. 16(1), 3-13.
- R. Weindruch. (1995). Interventions Based on the Possibility That Oxidative Stress Contributes to Sarcopenia. J Gerontol a-Biol. 50, 157-61.
- A. D. Iorio, 1st Author et al. (2006). Sarcopenia: Age-related skeletal muscle changes from determinants to physical disability. Int J Immunopath Ph. 19(4), 703-719. https://doi.org/10.1177/039463200601900401
- T. V. Zglinicki, C. M. Martin-Ruiz. (2005). Telomeres as biomarkers for ageing and age-related diseases. Curr Mol Med. 5(2), 197-203. https://doi.org/10.2174/1566524053586545
- Schriner SE, 1st Author et al. (2005). Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 308(5730), 1909-1911. https://doi.org/10.1126/science.1106653
- Y. S. Bae, H. Oh, S. G. Rhee, D. Y. Yoo. (2011). Regulation of reactive oxygen species generation in cell signaling. Mol Cells. 32(6), 491-509. https://doi.org/10.1007/s10059-011-0276-3
- C. E. Cross, 1st Author et al. (1987). Oxygen Radicals and Human-Disease. Ann Intern Med. 107(4), 526-545. https://doi.org/10.7326/0003-4819-107-4-526
- S. K. Powers, L. L. Ji, A. N Kavazis, M. J. Jackson. (2011). Reactive Oxygen Species: Impact on Skeletal Muscle. Compr Physiol. 1(2) , 941-969.
- B. Mintz, W. W. Baker. (1967). Normal mammalian muscle differentiation and gene control of isocitrate dehydrogenase synthesis. Proc Natl Acad Sci U S A. 58(2), 592-598. https://doi.org/10.1073/pnas.58.2.592
- J. S. Straeter, 1st Author et al. (2011). Characterization of human myoblast differentiation for tissue-engineering purposes by quantitative gene expression analysis. J Tissue Eng Regen Med. 5(8), e197-206. https://doi.org/10.1002/term.417
- A. J. Wagers, I. M. Conboy. (2005). Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell. 122(5), 659-667. https://doi.org/10.1016/j.cell.2005.08.021
- A. Levinovitz, E. Jennische, A. Oldfors, D. Edwall, G. Norstedt. (1992). Activation of insulin-like growth factor II expression during skeletal muscle regeneration in the rat: correlation with myotube formation. Mol Endocrinol. 6(8), 1227-1234. https://doi.org/10.1210/me.6.8.1227