DOI QR코드

DOI QR Code

Analysis of Major Factors related to the Generation of Fine Particulate Matter in Hanwoo Manure Composting Facilities

한우분뇨 퇴비화시설에서의 미세 입자상물질 발생 주요인자 분석

  • 정광화 (농촌진흥청 국립축산과학원 축산환경과) ;
  • 박회만 (농촌진흥청 국립축산과학원 축산환경과) ;
  • 이동준 (농촌진흥청 국립축산과학원 축산환경과) ;
  • 김중곤 (농촌진흥청 국립축산과학원 축산환경과) ;
  • 이동현 (농촌진흥청 국립축산과학원 축산환경과) ;
  • 김다혜 (제주대학교 동물생명공학과)
  • Received : 2020.12.06
  • Accepted : 2020.12.14
  • Published : 2020.12.30

Abstract

The concentrations of ammonia, hydrogen sulfide and fine dust were measured in the compost facility of a full-time Hanwoo breeding farms. The experiments were conducted in stack type composting facility(T1) and mechanical-stirred composting facilities(T2, T3). In the stack type composting facility, the highest temperature of compost pile was 46℃, and in the two mechanical-stirred composting facilities, it rose to 63℃ and 68℃, respectively. The concentrations of PM2.5 at T1, T2 were 15 ㎍/㎥ and 5~10 ㎍/㎥, respectively. And the concentration of PM2.5 at T3 was below 10 ㎍/㎥. The highest concentration of ammonia generated at T1 was 4 ppm, but no hydrogen sulfide was detected. The ammonia concentrations at T2 and T3 were 3 ppm and 4 ppm, respectively. However, hydrogen sulfide was not detected in both facilities. At T3, the ammonia concentration increased to 65 ppm at the point where the compost was stirred with a mechanical agitator. During composting period, the pH of the compost pile decreased from 9.06 to 8.94 and then increased to 9.14 as the composting period elapsed. The NaCl content of compost was 0.09% after composting process was complete. Moisture content of compost decreased from 65.9% to 62% as composting progressed. As composting proceeded, the content of volatile solids decreased from 65.6% to 64.7% and the content of TKN decreased from 1.327% to 1.095%.

한우를 전문으로 사육하는 전업농가의 퇴비사에서 암모니아와 황화수소 그리고 미세먼지 발생량을 측정하였다. 시험은 단순퇴적식 퇴비화시설(T1)과 기계교반식 퇴비화시설(T2, T3)로 구분하여 수행하였다. 단순퇴적식 퇴비단(T1)의 경우 최고온도가 46℃를 기록하였고, 2곳의 기계교반식 퇴비화시설들(T2, T3)에서는 각각 63℃와 68℃까지 상승하였다. T1에서의 PM2.5 농도는 15 ㎍/㎥ 수준이었고 T2에서는 PM2.5 농도가 5~10 ㎍/㎥ 내외의 수준을 유지하였다. T3에서는 PM2.5의 농도가 10 ㎍/㎥ 이하의 수준이었다. T1에서 발생하는 암모니아의 최고농도는 4 ppm이었으나 황화수소는 검출되지 않았다. T2에서는 암모니아 농도가 최고 3 ppm 수준이었으나 황화수소는 검출되지 않았다. T3의 암모니아 최고농도는 4 ppm을 나타낸 반면에 황화수소는 검출되지 않았다. T3에서는 교반기가 퇴비를 교반하는 지점에서의 암모니아 농도가 65 ppm까지 상승하였다. 퇴비화 기간이 경과함에 따라 초기에 9.06이었던 퇴비단의 pH가 퇴비화기간을 거치면서 8.94로 낮아졌다가 다시 9.14 수준으로 상승하였다. 염분(NaCl)농도는 퇴비화가 진행된 이후에 0.09% 수준이었다. 수분함량은 65.9% 수준에서 62% 수준으로 낮아졌으며, 총고형물 중에서 휘발성고형물(Volatile Solids)이 차지하는 비율은 퇴비화 초기에 65.6%에서 퇴비화후기에는 64.7% 낮아졌다. 퇴비화 초기에 1.327% 수준이었던 TKN 함량도 퇴비화를 거치면서 1.095%로 낮아졌다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구과제인 가축분뇨퇴비화과정에서 암모니아와 미세먼지 발생원단위 설정 및 감소기술 개발 연구(PJ01429703)과정에 의해 이루어졌으며, 이에 감사드립니다.

References

  1. Korean statistical information service, "Statistic information in the field of agriculture, forestry and fisheries". (2020).
  2. Lee, S. H., Yu, B. K., Ju, S. Y., Kang, Y. G. and Jung, G. H., "Characteristics of Solid Fuel from Cattle Manure", New & Renewable Energy, 12(4), pp. 64-69. (2016). https://doi.org/10.7849/ksnre.2016.12.12.4.064
  3. Kim, M. S., Kool, N. and Kim, J. G., "A comparative study on ammonia emission inventory in livestock manure compost application through a foreign case study", Korean J. Environ. Biol., 38(1), pp. 71-81. (2020). https://doi.org/10.11626/KJEB.2020.38.1.071
  4. Hodan, W. M. and Banard, W. R., "Evaluating the contribution of PM2.5 precursor gases and reentrained road emissions to mobile source PM2.5 particulate matter emissions". MACTEC Federal Programs, Research Triangle Park. (2004).
  5. Shin, D. W., Joo, H. S., Seo, E. J. and Kim, C. Y., "Management strategy to reduce PM-2,5 emission : Emphasis ammonia". Korea Environment Institute. (2017).
  6. Hristov, A. N., "Contribution of ammonia emitted from livestock to atmospheric fine particulate matter (PM2.5) in the United States". J. Dairy Sci., 94(31), pp. 3130-3136. (2011). https://doi.org/10.3168/jds.2010-3681
  7. Choi, H. C., Yeon, G. Y., Song, J. I., Kang, H. S., Kwon, D. J. and Yoo, Y. H., "Seasonal Dust Concentration and Characteristics of Windowless Broiler Building". Journal of Livestock Housing and Environment, 11(3), pp. 197-206. (2006).
  8. Kim, H. A., Kim, J. Y., Shin, K. M., Jo, J. H., Roque, K., Jo, G. H. and Heo, Y., "Relationship between Endotoxin level of in swine farm dust and cellular immunity of husbandry workers". Journal of Korean Society of Occupational and Environmental Hygiene, 23(4), pp. 393-401. (2013).
  9. APHA., "Standard Methods for the Examination of Water and Wastewater", 21th Edition, (2005).
  10. AOAC., "Official Methods of Analysis". AOAC INTERNATIONAL. (2007).
  11. Korean Ministry of Agriculture., Agricultural cooperative federation(NongHyup of Korea)., "Guidebook of standard design drawings for construction of livestock manure recycling facilities" (2008).
  12. Rural Development Adminstration, "Establishment and designation of fertilizer standards". (2020).
  13. Tibu, C., Annang, T. Y., Solomon, N. and D, Yirenya-Tawiah, "Effect of the composting process on physicochemical properties and concentration of heavy metals in market waste with additive materials in the Ga West Municipality, Ghana", International Journal of Recycling of Organic Waste in Agriculture, 8, pp. 393-403. (2019). https://doi.org/10.1007/s40093-019-0266-6
  14. Lee, S. B., Kim, J. G., Lee, D. B., Lee, K. B., Han, S. S., Kim, J. D. and Baek, S. H., "Changes of Physico-chemical Properties and Microflora of Pig Manure due to Composting with Turning Times and Depth", Korean Society of Soil Science and Fertilizer, 35(2), pp. 127-135. (2002).
  15. Dewes, Th., "Nitrogen Losses from Manure Heaps:," Biological Agriculture & Horticulture, 11(1), pp. 309-317. (2012) . https://doi.org/10.1080/01448765.1995.9754715
  16. Lee, D. J., Kim, J. K., Jeong, K. H., Cho, W. M. and Ravindran, B., "Characteristic Changes of Swine Manure by Air Suction Composting System". Jornal of Korea Organic Resource Recycling Association, 24(3), pp. 63-74. (2016). https://doi.org/10.17137/korrae.2016.24.3.63
  17. Lee, Y. S., Choi, H. K., Kim, J. K., Lee, Y. H., Chung, K. T., Roh, J. S. and Suh, M. G., "Optimum mixing ratio of sewage sludge during composting of food wastes". Korean journal of environmental health science, 30(5), pp. 366-373. (2004).
  18. Dastpak, H., Pasalari, H., Jafari, A. J., Gholami, M. and Farzadkia, M., "Improvement of Co-Composting by a combined pretreatment Ozonation/Ultrasonic process in stabilization of raw activated sludge". Scientific Reports Open access (https://doi.org/10.1038/s41598-020-58054-y) 10, pp. 1070. (2020).