DOI QR코드

DOI QR Code

고도 변화에 따른 전투기 적외선 신호 최소 조건 분석

Effect of Flight Altitude on Minimal Infrared Signature of Combat Aircraft

  • 남주영 (연세대학교 기계공학과 대학원) ;
  • 장인중 (연세대학교 기계공학과 대학원) ;
  • 이용우 (연세대학교 기계공학과 대학원) ;
  • 김지현 (국방과학연구소) ;
  • 조형희 (연세대학교 기계공학과)
  • Nam, Juyeong (Department of Mechanical Engineering, Yonsei Univ.) ;
  • Chang, Injoong (Department of Mechanical Engineering, Yonsei Univ.) ;
  • Lee, Yongwoo (Department of Mechanical Engineering, Yonsei Univ.) ;
  • Kim, Jihyun (Agency for Defense Development) ;
  • Cho, Hyung Hee (Department of Mechanical Engineering, Yonsei Univ.)
  • 투고 : 2020.09.24
  • 심사 : 2020.11.13
  • 발행 : 2020.12.31

초록

적외선 유도 무기 체계의 발달로 항공기의 생존성은 지속적으로 위협받고 있으며, 항공기의 생존성을 향상시키기 위한 적외선 스텔스 기술 관련 연구가 진행되고 있다. 본 논문에서는 적외선 유도 미사일이 항공기와 배경 간의 대비 신호를 탐지하는 것에 주목하여 비행 조건에 따른 항공기의 최적 적외선 신호를 분석하고자 하였다. 이를 위해 항공기의 비행 조건을 고려하여 유동 해석과 대류, 전도, 복사 3차원 열전달 해석을 수행하였고, 동체 표면 온도를 도출하여 항공기 주변 유동 특성을 기반으로 항공기의 적외선 신호를 분석하였다. 더 나아가, 비행 조건 별로 최적 적외선 신호를 갖기 위한 최적 방사율을 도출하였고, 비행 조건 별로 최적 방사율을 동체 표면에 적용했을 때 적외선 신호 저감 효과를 분석하였다.

Owing to the rapid development of infrared guided weapon systems, the threat to aircraft survivability is constantly increasing, and research on infrared stealth technologies are being conducted to ensure aircraft survival. In this study, we analyze the minimum infrared signature of an aircraft according to its flight altitude by considering the characteristics of infrared guided missiles, which detect the contrast signature between the aircraft and background. We conducted computational fluid dynamics simulations for the convective coefficient, and heat transfer simulations were performed considering convection, conduction, and radiation for flight conditions. Thus, we obtained the surface temperature distribution of the aircraft and analyzed the aircraft infrared signature based on the flow characteristics around it. Furthermore, the optimum emissivity for the minimum infrared signature was derived, and the effect of the infrared signature was analyzed when this optimum emissivity was applied to the fuselage surface for each flight condition.

키워드

참고문헌

  1. ANSYS, Inc. (2015) ANSYS Fluent Theory Guide 17.2, ANSYS, Inc., Canonsburg, USA.
  2. Bae, M., Kim, T., Kim, T., Jung, D., Cho, H.H. (2016) Analysis on Infrared Stealth Performance with Emissivity Controlled Aircraft Surface Structure at Various Background, J. Comput. Struct. Eng. Inst. Korea, 29(5), pp.455-461. https://doi.org/10.7734/COSEIK.2016.29.5.455
  3. Baranwal, N., Mahulikar, S.P. (2019) Review of Infrared Signature Suppression Systems using Optical Blocking Method, Def. Technol., 15(3), pp.432-439. https://doi.org/10.1016/j.dt.2018.12.002
  4. Cha, J., Kim, T., Bae, J-Y., Cho, H.H. (2014) Variation of Supersonic Aircraft Skin Temperature under Different Mach Number and Structure, J. Korea Inst. Mil. Sci. & Technol., 17(4), pp.463-470. https://doi.org/10.9766/KIMST.2014.17.4.463
  5. GasTurb GmbH, (2015) GasTurb 12: Design and Off-Design Performance of Gas Turbines, GasTurb GmbH, Aachen, Germany.
  6. Kim, T., Lee, H., Bae, J-Y., Kim, T., Cha, J., Jung, D., Cho, H.H. (2016) Susceptibility of Combat Aircraft Modeled as an Anisotropic Source of Infrared Radiation, IEEE Trans. Aerosp. & Electron. Syst., 52(5), pp.2467-2476. https://doi.org/10.1109/TAES.2016.150513
  7. Lee, Y., Settles, G.S., Horstman, C.C. (1994) Heat-Transfer Measurements and Computations of Swept-Shock-Wave Boundary-Layer Interactions, AIAA Journal, 32(4), pp.726-734. https://doi.org/10.2514/3.12045
  8. Rao, G.A., Mahulikar, S.P. (2001) Effect of Atmospheric Transmission and Radiance on Aircraft Infrared Signatures, J. Aircr., 42(4), pp.1046-1054. https://doi.org/10.2514/1.7515
  9. Rao, G.A., Mahulikar, S.P. (2002) Integrated Review of Stealth Technology and Its Role in Airpower, Aeronaut. J., 106(1066), pp.629-641.
  10. Rao, G.A., Mahulikar, S.P. (2005) New criterion for Aircraft Susceptibility to Infrared Guided Missiles, Aerosp. Sci. & Technol., 9(8), pp.701-712. https://doi.org/10.1016/j.ast.2005.07.005
  11. Sonawane, H.R., Mahulikar, S.P. (2013) Effect of Missile Turn Rate on Aircraft Susceptibility to Infrared-Guided Missile, J. Aircr., 50(2), pp.663-667. https://doi.org/10.2514/1.C031902
  12. Sonawane, H.R., Mahulikar, S.P. (2009) Study of Sunshine, Skyshine, and Earthshine for Aircraft Infrared Detection, J. Optics A-Pure & Appl. Optics, 11(4), p.045703. https://doi.org/10.1088/1464-4258/11/4/045703
  13. Sonawane, H.R., Mahulikar, S.P. (2011) Tactical Air Warfare: Generic Model for Aircraft Susceptibility to Infrared Guided Missiles, Aerosp. Sci. & Technol., 15(4), pp.249-260. https://doi.org/10.1016/j.ast.2010.07.008
  14. ThermoAnalytics, Inc. (2019) TAIThermIR User Manual Version 13.2.0, ThermoAnalytics, Inc., Calumet, USA.