DOI QR코드

DOI QR Code

Deflection Limit for a Maglev Railway Guideway Considering Ride Comfort

승차감을 고려한 자기부상철도 가이드웨이 구조물의 처짐 한계

  • Lee, Jin Ho (Department of Ocean Engineering, Pukyong National Univ.)
  • 이진호 (부경대학교 해양공학과)
  • Received : 2020.09.14
  • Accepted : 2020.10.17
  • Published : 2020.12.31

Abstract

A standard for the vibration magnitude of a maglev train is presented herein to ensure a comfortable ride for the passengers. The vibration magnitude is determined from the vertical acceleration of the car body. A parameter analysis of the maglev train system is then performed considering the vehicle-structure interaction, and a deflection limit of L/1300 is proposed to satisfy the standard for the vertical acceleration. The proposed deflection limit is applied to the dynamic analysis of the actual maglev train system to assess applicability. Compared with the existing standard for the guideway structure, the proposed deflection limit is expected to enable economical design and construction.

승객에게 편안한 승차감을 제공할 수 있도록 자기부상열차 차체 연직가속도의 진동크기에 대한 기준을 제시하고 이를 만족하는 가이드웨이 구조물의 처짐한계를 제안한다. 차량-구조물 상호작용을 고려한 해석기법을 사용하여 자기부상열차 시스템의 매개변수 해석을 수행하고, 차체 연직가속도에 대한 기준을 만족할 수 있는 가이드웨이 구조물의 처짐한계를 L/300로 제안한다. 이를 실제 자기부상열차 시스템의 동적 해석에 적용하여 제안한 처짐한계의 적절성을 검토한다. 기존의 자기부상철도 가이드웨이 구조물의 설계 기준과 비교하였을 때, 이 연구에서 제안한 처짐한계를 적용하면 경제적인 가이드웨이 구조물의 설계와 시공이 가능할 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 국토교통부에서 시행하는 "도시경관 친화형 경전철 고가구조물 설계기술 개발" 과제로부터 지원을 받아 수행한 연구 결과입니다. 이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1I1A3068424).

References

  1. British Standards Institution (1987) Measurement and Evaluation of Human Exposure to Whole-Body Mechanical Vibration and Repeated, BSI, p.6841.
  2. European Committee for Standardization (2002) Eurocode - Basis of Structural Design, EN 1990:2002+A1.
  3. International Organization for Standardization (1997) Mechanical Vibration and Shock - Evaluation of Human Exposure to WholeBody Vibration. Part 1: General Requirements, ISO 2631-1.
  4. Jang, J., Lee, J., Jun, H., Lee, K. (2017) Analysis and Improvement of Stability of Hypertube, Proceedings of the 2017 Spring Conferece of the Korean Society of Railway, KSR2017S051.
  5. Jung, M.-R., Min, D.-J., Lee, J.-S., Kwon, S.-D., Kim, M.-Y. (2011) Dynamic Interaction Analysis of Train and Bridge According to Modeling Methods of Maglev Trains, J. Comput. Struct. Eng. Inst. Korea, 24(2), pp.167-175.
  6. Korea Rail Network Authority (2007) Design Manual of Honam High Speed Railway, Korea Rail Network Authority, Deajeon.
  7. Korea Rail Network Authority (2010) Structural Design Report for Demonstration Line of Urban Maglev Program.
  8. Lee, H.W., Kim, K.C., Lee, J. (2006) Review of Maglev Train Technologies, IEEE Trans. Magn., 42, pp.1917-1925. https://doi.org/10.1109/TMAG.2006.875842
  9. Lee, J.H., Kim, L.H., Kim, S.I. (2014) Verification of an Analysis Method for Maglev Train-Guideway Interaction Using Field Measurement Data, J. Korean Soc. Railw., 17, pp.233-244. https://doi.org/10.7782/JKSR.2014.17.4.233
  10. Lee, J.H., Kim, S.I. (2016) Dynamic Interaction Analysis between Maglev Train with Airgap Control Algorithm Based on Acceleration Feedback and Guideway, J. Comput. Struct. Eng. Inst. Korea, 29(2), pp.193-199. https://doi.org/10.7734/COSEIK.2016.29.2.193
  11. Lee, J.H., Kim, S.I., Shin, J.R. (2020) Proposal of Deflection Limits for Elevated Guideways for Light Rail Transit Considering Ride Comfort, J. Korean Soc. Railw., 23, pp.298-305. https://doi.org/10.7782/JKSR.2020.23.4.298
  12. Lee, J.S., Kwon, S.D., Yeo, I.H., Kim, M.Y. (2009) The Dynamic Interaction Analysis of Actively Controlled Maglev and Guideway Bridge Systems, J. Korean Soc. Civil Eng., 29(4D), pp.523-533.
  13. Sinha, P.K. (1987) Electromagnetic Suspension: Dynamics and Control, Peter Peregrinus Ltd., London, United Kingdom.
  14. Yau, J.D. (2009) Vibration Control of Maglev Vehicles Traveling over a Flexible Guideway, J. Sound & Vib., 321(1-2), pp.184-200. https://doi.org/10.1016/j.jsv.2008.09.030
  15. Zhou, D., Hansen, C.H., Li, J., Chang, W. (2010) Review of Coupled Vibration Problems in EMS Maglev Vehicles, Int. J. Acoust. & Vib., 15(1), pp.10-23.