DOI QR코드

DOI QR Code

Molecular analysis of peptide toxins secreted by various Pseudomonas tolaasii strains

다양한 Pseudomonas tolaasii 균주에 의해 분비되는 펩티드 독소의 분석

  • Yun, Yeong-Bae (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Kim, Young-Kee (Department of Environmental and Biological Chemistry, Chungbuk National University)
  • Received : 2020.09.29
  • Accepted : 2020.10.30
  • Published : 2020.12.31

Abstract

Pseudomonas tolaasii is a pathogen causing brown blotch disease in cultivated mushrooms. In previous study, various strains of P. tolaasii were isolated from the mushrooms with disease symptoms and they were further divided into Ptα, Ptβ, and Ptγ subtypes according to the 16S rRNA gene analysis. To investigate the secretion of peptide toxins, tolaasin and its analog peptides, culture extracts of Pt group strains were analyzed by gel permeation chromatography. Those of Ptα subtype strains contained two chromatographic peaks, band A and B. Meanwhile, those of Ptβ and Ptγ subtype strains contained mainly band A component and a little of band B. Molecular weights of toxic peptides of culture extracts were measured by MALDI-TOF mass spectrometry. In Ptα subtype strains, the peptide compositions of band A and B were same including tolaasin I (1,987 Da), tolaasin II (1,943 Da), and its two analog peptides, 1,973 Da and 2,005 Da. The strains of Ptβ and Ptγ subtype secreted many components of MW 1,100-1,200 Da, but they did not synthesize any tolaasin-like peptides. These results suggest that the only Ptα subtype strains secrete tolaasin and its analog peptide toxins and the strains of Ptβ and Ptγ subtypes have different pathogenic characters causing brown blotch disease.

Pseudomonas tolaasii는 인공재배 버섯에 갈반병을 일으키는 병원 세균이다. 이전 연구에서, 갈반병이 발생한 버섯 조직에서 다양한 P. tolaasii 균주를 분리하였으며, 그들은 16S rRNA 유전자 분석을 통하여 Ptα와 Ptβ, Ptγ 소그룹으로 세분류되었다. Tolaasin 및 이의 유사 펩티드 분비를 조사하기 위하여, Pt 그룹 균주들의 배양추출액을 gel permeation chromatography로 분석하였다. Ptα 소그룹 균주들의 배양추출액은 두 개의 chromatographic band인 band A와 B로 이루어졌다. 반면, Ptβ와 Ptγ 소그룹 균주들의 배양추출액은 주로 band A 성분만을 가졌으며, band B는 약하게 나타났다. 배양액 중 독성 펩티드들을 MALDI-TOF 질량분석기를 이용하여 분석하였다. Ptα 소그룹 균주들에서 band A와 B의 펩티드 조성은 tolaasin I (1987 Da)과 tolaasin II (1943 Da), 1,973 Da과 2,005 Da인 두 개의 유사 펩티드를 포함하여 동일하였다. Ptβ와 Ptγ 소그룹 균주들은 분자량 1,100-1,200 Da의 많은 성분들을 분비하였으나, 이들은 tolaasin 유사 펩티드를 포함하지 않았다. 이러한 결과는 Ptα 소그룹 균주들만이 tolaasin 및 유사 펩티드 독소를 분비하며, Ptβ와 Ptγ 소그룹 균주들은 갈반병을 일으키는 다른 병원 특성을 가짐을 보여준다.

Keywords

References

  1. Lee GS, Byun HS, Yoon KH, Lee JS, Choi KC, Jeung EB (2009) Dietary calcium and vitamin D2 supplementation with enhanced Lentinula edodes improves osteoporosis-like symptoms and induces duodenal and renal active calcium transport gene expression in mice. Eur J Nutr 48: 75-83 https://doi.org/10.1007/s00394-008-0763-2
  2. Zhang M, Huang J, Xie X, Holman CJ (2009) Dietary intakes of mushrooms and green tea combine to reduce the risk of breast cancer in Chinese women. Int J Cancer 124: 1404-1408 https://doi.org/10.1002/ijc.24047
  3. Annual Report for Production of Mushroom (2019) Agricultural information and statistics. Ministry of Agriculture and Forestry, Sejong, Korea
  4. Jourdan F, Lazzaroni S, Mendez BL, Lo Cantore P, de Julio M, Amodeo P, Iacobellis NS, Evidente A, Motta A (2003) A left-handed α-helix containing both L- and D-amino acids: the solution structure of the antimicrobial lipodepsipeptide tolaasin. Proteins 52: 534-543 https://doi.org/10.1002/prot.10418
  5. Silva T, Claro B, Silva BFB, Vale N, Gomes P, Gomes MS, Funari SS, Teixeira J, Uhrikova D, Bastos M (2018) Unravelling a mechanism of action for a cecropin A-melittin hybrid antimicrobial peptide: the induced formation of multilamellar lipid stacks. Langmuir 34: 2158-2170 https://doi.org/10.1021/acs.langmuir.7b03639
  6. Nutkins JC, Mortishire-Smith RJ, Packman LC, Brodey CL, Rainey PB, Johnstone K, Williams DH (1991) Structure determination of tolaasin, an extracellular lipodepsipeptide produced by the mushroom pathogen Pseudomonas tolaasii Paine. J Am Chem Soc 113: 2621-2627 https://doi.org/10.1021/ja00007a040
  7. Bassarello C, Lazzaroni S, Bifulco G, Lo Cantore P, Iacobellis NS, Riccio R, Gomez-Paloma L, Evidente A (2004) Tolaasins A-E, five new lipodepsipeptides produced by Pseudomonas tolaasii. J Nat Prod 67: 811-816 https://doi.org/10.1021/np0303557
  8. Shirata A, Sugaya K, Takasugi M, Monde K (1995) Isolation and biological activity of toxins produced by a Japanese strain of Pseudomonas tolaasii, the pathogen of bacterial rot of cultivated oyster mushroom. Ann Phytopathol Soc Jpn 61: 493-502 https://doi.org/10.3186/jjphytopath.61.493
  9. Cho KH, Kim ST, Kim YK (2007) Purification of a pore-forming peptide toxin, tolaasin, produced by Pseudomonas tolaasii 6264. J Biochem Mol Biol 40: 113-118
  10. Yun YB, Park SW, Cha JS, Kim YK (2013) Biological characterization of various strains of Pseudomonas tolaasii that causes brown blotch disease. J Korean Soc Appl Biol Chem 56: 41-45 https://doi.org/10.1007/s13765-012-2242-y
  11. Abou-Zeid MA (2012) Pathogenic variation in isolates of Pseudomonas causing the brown blotch cultivated mushroom, Agaricus bisporus. Braz J Microbiol 43: 1137-1146 https://doi.org/10.1590/S1517-838220120003000041
  12. Coraiola M, Lo Cantore P, Lazzaroni S, Evidente A, Iacobellis NS, Dalla Serra M (2006) WLIP and tolaasin I, lipodepsipeptides from Pseudomonas reactans and Pseudomonas tolaasii, permeabilise model membranes. Biochim Biophys Acta 1758: 1713-1722 https://doi.org/10.1016/j.bbamem.2006.06.023
  13. Cho KH, Wang HS, Kim YK (2009) Temperature-dependent hemolytic activity of membrane pore-forming peptide toxin, tolaasin. J Pept Sci 16: 85-90 https://doi.org/10.1002/psc.1199
  14. Soler-Rivas C, Jolivet S, Arpin N, Olivier JM, Wichers HJ (1999) Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus. FEMS Microbiol Rev 23: 591-614 https://doi.org/10.1016/S0168-6445(99)00023-6
  15. Yun YB (2020) Pathogenic characterization of various phage-resistant mutant strains induced from Pseudomonas tolaasii. Dissertation, Chungbuk National University
  16. Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L, Schmidt SK, Fierer N, Townsend AR, Cleveland CC, Stanish L, Knight R (2011) Global patterns in the biogeography of bacterial taxa. Environ Microbiol 13: 135-144 https://doi.org/10.1111/j.1462-2920.2010.02315.x
  17. Gilbert JA, Steele JA, Caporaso JG, Steinbruck L, Reeder J, Temperton B, Huse S, McHardy AC, Knight R, Joint I, Somerfield P, Fuhrman JA, Field D (2012) Defining seasonal marine microbial community dynamics. ISME J 6: 298-308 https://doi.org/10.1038/ismej.2011.107
  18. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12: 38 https://doi.org/10.1186/1471-2105-12-38
  19. Poretsky R, Rodriguez-R LM, Luo C, Tsementzi D, Konstantinidis KT (2014) Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS ONE 9: e93827 https://doi.org/10.1371/journal.pone.0093827