DOI QR코드

DOI QR Code

A Convergent Investigation on the Air Flow Analysis of a Light Aircraft Propeller

경비행기 프로펠러의 공기 유동해석에 관한 융합 연구

  • Choi, Kye-Kwang (Department of Metal Mold Design Engineering, Kongju National University) ;
  • Cho, Jae-Ung (Division of Mechanical & Automotive Engineering, Kongju National University)
  • 최계광 (공주대학교 금형설계공학과) ;
  • 조재웅 (공주대학교 기계자동차공학부)
  • Received : 2020.08.18
  • Accepted : 2020.12.20
  • Published : 2020.12.28

Abstract

In this study, the models with three, five and ten wings of the propeller which made a light aircraft fly were performed by air flow analyses. As for the flow model A with the shape with five wings, Model A can be seen to be the most ideal flow of air. The flow of air through the number of wings, which is not too many or too few, shows the most smooth flowing form. The smaller the number of propeller blades, the smaller the flow of air. Model A is applied under pressure of up to 0.5631 MPa at the front of air flow. Also, models B and C are applied under pressures of 0.5758 MPa and 0.5589 MPa, respectively. Comparing the pressure contours for each model of flux, model B can be shown to have the highest pressure distribution. The result of this study can be used to investigate the air flow without actual testing. It also seems to be helpful in the aesthetic convergent design of light aircraft propeller.

본 연구에서는 경비행기를 날게 하는 프로펠러인 3개 및 5개 또는 10개가 있는 날개의 모델들로서 공기 유동 해석을 하였다. Model A에 대해서는 5개의 날개들이 있는 유동 형상으로서 Model A가 가장 이상적인 공기의 흐름을 보이고 있다. 너무 많거나 적지도 않은 날개 수로 공기의 흐름이 가장 원활히 흐르는 형상을 나타내고 있다. 프로펠러 날개의 수가 적으면 적을수록 공기의 유동이 작아지는 것을 볼 수 있다. Model A는 공기 유동의 전면부에서 최대 0.5631 MPa의 압력을 받고 있다. 또한 Model B와 Model C는 0.5758 MPa 및 0.5589 MPa의 압력을 각각 받고 있다. 각 유동 모델들에 대한 압력 등고선들을 비교해 보면, Model B가 그 압력 분포가 제일 높은 것으로 볼 수 있다. 본 연구 결과를 활용하면 실제 시험을 하지 않고서도 공기 유동을 조사할 수 있다. 또한 경비행기 프로펠러의 미적인 융합 설계에 도움이 될 수 있다고 보인다.

Keywords

References

  1. C. S. Won, N. K. Hur & S. H. Kwon. (2013). Flow Analysis of Automotive Oil Pump of Gerotor Type. The KSFM Journal of Fluid Machinery, 6(4), 7-13. DOI : 10.5293/KFMA.2003.6.4.007
  2. C. H. Choi, J. G. Noh & J. H. Kim. (2010). Numerical Simulation of Cavitating Flow Around Turbopump Inducer. The KSFM Journal of Fluid Machinery, 13(3), 49-53. DOI : 10.5293/KFMA.2010.13.3.049
  3. J. H. Lee & J. U. Cho. (2015). Study on Convergence Technique through Flow Analysis at the Flexible Joint of the Pipe Laying. Journal of the Korea Convergence Society, 6(3), 13-18. DOI : 10.15207/JKCS.2015.6.3.013
  4. H. C. Lee & J. U. Cho. (2014). A Study on Air Flow Analysis due to the Shape of Automotive Body. Journal of the Korea Convergence Society, 5(2), 19-23. DOI : 10.15207/JKCS.2014.5.2.019
  5. D. W. Jeong, Y. S. Won & S. H. Kang. (2019). Comparison Study on Aerodynamic Performance and Wake Flow Field for a MW-Class Wind Turbine Model. Journal of the Korean Society of Visualization, 17(2), 32-38. DOI : 10.5407/jksv.2019.17.2.032
  6. S. W. Park, I. S. Choi, K. C. Noh, S. P. Ryu & K. S. Yoon. (2012). An Experimental Study on Measurement of Flow Coefficient Using the Steady-Flow Test Rig. Journal of the Korean Society of Marine Engineering, 36(4), 423-429. DOI : 10.5916/jkosme.2012.36.4.423
  7. K. K. Choi, S. M. Hong & S. R. Han. (2015). Effect of Flow Pattern of Coolant for Injection Mold on the Deformation of Injection Molding. Journal of the Korean Society of Manufacturing Process Engineers, 14(4), 92-99. DOI : 10.14775/ksmpe.2015.14.4.092
  8. G. H. Kim & D. R. Lee. (2016). A Study on The Flow Analysis in the Turbocharger Turbine with Different Rotational speeds. Journal of the Korean Society of Mechanical Technology, 18(5), 734-739. DOI : 10.17958/ksmt.18.5.201610.734
  9. J. B. Lee, D. H. Yang, S. Y. Kim & K. S. Kim. (2015). A Study on Flow Analysis of the Blast Valve for Anti-aircraft Shelter. Journal of the Korean Society of Mechanical Technology, 17(5), 1107-1115. DOI : doi.org/10.17958/ksmt.17.5.201510.1107
  10. H. J. Oh, J. H. Lyu & J. Y. Park. (2016). Rodent Experiments for Pedestrian Flow Simulation at Exit with Various Angles. Journal of the Korean Society of Manufacturing Process Engineers, 15(4), 30-39. DOI : 10.14775/ksmpe.2016.15.4.030
  11. H. C. Lee & J. U. Cho. (2014). A Study on Air Flow Analysis due to the Shape of Automotive Body. Journal of the Korea Convergence Society, 5(2), 19-23. DOI : 10.15207/jkcs.2014.5.2.019
  12. O. B. Suk & J. U. Cho. (2018). A Convergence Study through Flow Analysis due to the Configuration of Automotive Air Breather. Journal of the Korea Convergence Society, 9(10), 265-270. DOI : 10.15207/JKCS.2018.9.10.265
  13. S. H. Jung. (2017). The Control of Spring-Mass-Damper Convergence System using H∞ Controller and μ-Synthesis Controller. Journal of the Korea Convergence Society, 8(5), 1-11. DOI : 10.15207/JKCS.2017.8.5.001
  14. Y. S. Lim & H. K. Choi. (2019). Numerical Study of Forced Convection Nanofluid in Double Pipe. Journal of Convergence for Information Technology, 9(12), 147-156. DOI : 10.22156/CS4SMB.2019.9.12.147
  15. W. B. Lee, S. H. Ryu, W. Y. Hao & B. P. Kyung. (2015). Dismantling Simulation of Nuclear Reactor Using Partial Mesh Cutting Method for 3D Model. Journal of Digital Convergence, 13(4), 303-310. DOI : 10.14400/JDC.2015.13.4.303