DOI QR코드

DOI QR Code

Real-time Collection and Correlation of Viscosity and Acoustic Data During Ball Milling Process

볼밀 공정 중 점도와 음향 데이터의 실시간 수집 및 상관관계 분석

  • Jeong, Hyeondeok (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Young-Beom (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Ryu, Sung-Soo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Seiki (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 정현덕 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 김영범 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 류성수 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 김세기 (한국세라믹기술원 이천분원 엔지니어링세라믹센터)
  • Received : 2020.11.30
  • Accepted : 2020.12.23
  • Published : 2020.12.28

Abstract

In this study, acoustic and viscosity data are collected in real time during the ball milling process and analyzed for correlation. After fast Fourier transformation (FFT) of the acoustic data, changes in the signals are observed as a function of the milling time. To analyze this quantitatively, the frequency band is divided into 1 kHz ranges to obtain an integral value. The integrated values in the 2-3 kHz range of the frequency band decrease linearly, confirming that they have a high correlation with changes in viscosity. The experiment is repeated four times to ensure the reproducibility of the data. The results of this study show that it is possible to estimate changes in slurry properties, such as viscosity and particle size, during the ball milling process using an acoustic signal.

Keywords

References

  1. B. K. Mishra and R. K. Rajamani: Appl. Math. Model., 16 (1992) 598. https://doi.org/10.1016/0307-904X(92)90035-2
  2. H. C. Li, W. M. Dong and X. P. Xie: Adv. Mater. Res., 634-638 (2013) 3732. https://doi.org/10.4028/www.scientific.net/AMR.634-638.3732
  3. D. Boemer and J.-P. Ponthot: Comput. Part. Mech., 4 (2017) 53. https://doi.org/10.1007/s40571-016-0125-4
  4. B. Behera, B. K. Mishra and C. V. R. Murty: Miner. Eng., 20 (2007) 84. https://doi.org/10.1016/j.mineng.2006.05.007
  5. Z.-G. Su, P.-H. Wang, X.-J. Yu and Z.-Z. Lv: Miner. Eng., 21 (2008) 699. https://doi.org/10.1016/j.mineng.2008.01.009
  6. P. Huang, M.-P. Jia and B.-l. Zhong: Miner. Eng., 22 (2009) 1200. https://doi.org/10.1016/j.mineng.2009.06.008
  7. G. Si, H. Cao, Y. Zhang and L. Jia: Miner. Eng., 22 (2009) 1289. https://doi.org/10.1016/j.mineng.2009.07.010
  8. J. Tang, L.-J. Zhao, J.-W. Zhou, H. Yue and T.-Y. Chai: Miner. Eng., 23 (2010) 720. https://doi.org/10.1016/j.mineng.2010.05.001
  9. K.-S. Cho, S.-H. Kim and Y. H. Lee: J. Korean Ceram. Soc., 55 (2018) 275. https://doi.org/10.4191/kcers.2018.55.3.06
  10. W. Guo, J. Q. Huang, Y. Lin, Q. F. Huang, B. J. Fei, J. Chen, W. C. Wang, F. Y. Wang, C. Y. Ma, X. Y. Yuan and Y. Cao: J. Eur. Ceram., 35 (2015) 3873. https://doi.org/10.1016/j.jeurceramsoc.2015.06.013
  11. P. Liu, M. Zhu, Z. Zhang and D. Zhang: J. Energy Resour. Technol., 141 (2019) 070709. https://doi.org/10.1115/1.4043551
  12. M. S. Lu, J. B. Li and W. H. Xiao: Biotechnol. Biofuels, 13 (2020) 77. https://doi.org/10.1186/s13068-020-01717-9
  13. J. Yu, S. Yang, J. Kim, Y. Lee, K.-T. Lim, S. Kim, S.-S. Ryu and H. Jeong: Processes, 8 (2020) 10.
  14. H. Watanabe: Powder Technol., 104 (1999) 95. https://doi.org/10.1016/S0032-5910(99)00031-5
  15. E. O. Brigham and R. E. Morrow: IEEE Spectr., 4 (1967) 63.
  16. H. Hassanin and K. Jiang: Int. J. Appl. Ceram. Technol., 10 (2013) 1014. https://doi.org/10.1111/j.1744-7402.2012.02845.x