DOI QR코드

DOI QR Code

Fabrication and Characterization of Immiscible Fe-Cu Alloys using Electrical Explosion of Wire in Liquid

  • Phuc, Chu Dac (School of Materials Science and Engineering, University of Ulsan) ;
  • Thuyet, Nguyen Minh (School of Materials Science and Engineering, Hanoi University of Science and Technology) ;
  • Kim, Jin-Chun (School of Materials Science and Engineering, University of Ulsan)
  • 투고 : 2020.10.11
  • 심사 : 2020.11.10
  • 발행 : 2020.12.28

초록

Iron and copper are practically immiscible in the equilibrium state, even though their atomic radii are similar. As non-equilibrium solid solutions, the metastable Fe-Cu alloys can be synthesized using special methods, such as rapid quenching, vapor deposition, sputtering, ion-beam mixing, and mechanical alloying. The complexity of these methods (multiple steps, low productivity, high cost, and non-eco-friendliness) is a hinderance for their industrial applications. Electrical explosion of wire (EEW) is a well-known and effective method for the synthesis of metallic and alloy nanoparticles, and fabrication using the EEW is a simple and economic process. Therefore, it can be potentially employed to circumvent this problem. In this work, we propose the synthesis of Fe-Cu nanoparticles using EEW in a suitable solution. The powder shape, size distribution, and alloying state are analyzed and discussed according to the conditions of the EEW.

키워드

참고문헌

  1. M. Hasebe and T. Nishizawa: Calphad, 5 (1981) 105. https://doi.org/10.1016/0364-5916(81)90036-5
  2. X. Huang and T. Mashimo: J. Alloys Compd., 288 (1999) 299. https://doi.org/10.1016/S0925-8388(99)00108-5
  3. A. W. Weeber: J. Phys. F. Met. Phys., 17 (1987) 809. https://doi.org/10.1088/0305-4608/17/4/008
  4. J. He, J. Z. Zhao and L. Ratke: Acta Mater., 54 (2006) 1749. https://doi.org/10.1016/j.actamat.2005.12.023
  5. G. Mazzone and M. V. Antisari: Phys. Rev. B, 54 (1996) 441. https://doi.org/10.1103/physrevb.54.441
  6. O. V. Bakina, E. A. Glazkova, N. V. Svarovskaya, N. G. Rodkevich and M. I. Lerner: Mater. Lett., 242 (2019) 187. https://doi.org/10.1016/j.matlet.2019.01.105
  7. A. R. Yavari, P. J. Desre and T. Benameur: Phys. Rev. Lett., 68 (1992) 2235. https://doi.org/10.1103/PhysRevLett.68.2235
  8. W. Klement: Trans. Metall. Soc. AIME, 233 (1965) 1180.
  9. E. F. Kneller: J. Appl. Phys., 35 (1964) 2210. https://doi.org/10.1063/1.1702819
  10. C. L. Chien, S. H. Liou, D. Kofalt, W. Yu, T. Egami, T. J. Watson and T. R. McGuire: Phys. Rev. B, 33 (1986) 3247. https://doi.org/10.1103/physrevb.33.3247
  11. K. Sumiyama and Y. Nakamura: Rapidly Quenched Metals, S. Steeb and H. Warlimont (Ed.), Elsveier, (1985) 859.
  12. L. J. Huang and B. X. Liu: Appl. Phys. Lett., 57 (1990) 1401. https://doi.org/10.1063/1.103447
  13. K. Uenishi, K. F. Kobayashi, S. Nasu, H. Hatano, K. N. Ishihara and P. H. Shingu: Z. Metallked., 83 (1992) 132.
  14. A. R. Yavari and P. J. Desre: Ordering and Disordering in Alloys, A. R. Yavari (Ed.), Elsevier, (1992) 414.
  15. A. Bachmaier, M. Kerber, D. Setman and R. Pippan: Acta Mater., 60 (2012) 860. https://doi.org/10.1016/j.actamat.2011.10.044
  16. V. A. Burtshev, N. V. Kalinin and A. V. Luchinskii: Electrical Explosion of Wires and Its Use in Electro-Physical Equipment, Energoatomizdat, Moscow, 1980.
  17. O. Nazarenko: Proceedings of European Congress of Chemical Engineering (ECCE-6), (2007).
  18. Y.-S. Kwon, J.-C. Kim, A. P. Ilyin, O. B. Nazarenko and D. V. Tikhonov: J. Korean Powder Metall. Inst., 19 (2012) 40. https://doi.org/10.4150/KPMI.2012.19.1.040
  19. M. Rengasamy, K. Anbalagan, S. Kodhaiyolii and V. Pugalenthi: RSC Adv., 6 (2016) 9261. https://doi.org/10.1039/C5RA15186D
  20. K. -P. Jeong, S. -W. Yang and J. -G. Kim: Arch. Metall. Mater., 63 (2018),1449.
  21. Z. G. Dan, H. Ni, B. F. Xu, J. Xiong and P. Y. Xiong: Thin Solid Films, 492 (2005) 93. https://doi.org/10.1016/j.tsf.2005.06.100
  22. E. Celik, S. Islak and C. Ilkilic: Mater. Tehnol., 48 (2014) 881.
  23. N. M. Thuyet and J. C. Kim: Arch. Metall. Mater., 64 (2019) 893.