Abstract
In this study, the practicality of unmanned aerial vehicle photography information was identified. Therefore, a total of four consecutive surveys were conducted on the field-level survey areas among the areas subject to photography using unmanned aerial vehicles, and the changes in crop conditions were analyzed using pictures of unmanned aerial vehicles taken during each survey. It is appropriate to collect and utilize photographic information by directly taking pictures of the survey area according to the time of the on-site survey using unmanned aerial vehicles in the field layer, which is an area where many changes in topography, crop vegetation, and crop types are expected. And it turned out that it was appropriate to utilize satellite images in consideration of economic and efficient aspects in relatively unchanged rice paddies and facilities. If the survey area is well equipped with systems for crop cultivation, deep learning can be utilized in real time by utilizing libraries after obtaining photographic data for a certain area using unmanned aircraft in the future. Through this process, it is believed that it can be used to analyze the overall crop and shipment volume by identifying the crop status and surveying the quantity per unit area.
본 연구에서는 무인 항공기 촬영 사진 정보의 실용성을 파악하였다. 따라서 무인 항공기를 활용한 사진촬영 대상 조사구 중 밭층 조사구역를 대상으로 연속적으로 총 4회 조사하여 조사 시기별 촬영된 무인 항공기 사진을 활용하여 조사구의 작황 변화에 대하여 분석하였다. 지형, 작물 식재, 작형의 변화가 많게 예상되는 지역인 밭층에서는 무인 항공기를 활용하여 현장조사 시기에 맞게 해당 조사구를 직접 촬영하여 사진 정보를 수집, 활용하는 것이 적합하다. 그리고 비교적 변화가 없는 논-시설층에서는 경제적, 효율적 측면을 고려하여 위성영상을 활용하는 것이 적합한 것으로 나타났다. 조사구역에 작물 재배조사를 위한 시스템들이 잘 갖추어지게 된다면, 향후 무인 항공기를 활용하여 일정한 지역에 대한 사진자료를 취득한 후 라이브러리를 활용하여 실시간으로 딥러닝을 활용할 수 있다. 이를 통해 작물의 작황상태를 파악, 재배 면적과 단위 면적당 수량 조사 등으로 전체 작황 및 출하량 등을 분석하는 데에 사용할 수 있을 것으로 판단된다.