DOI QR코드

DOI QR Code

Review of Features and Applications of Watershed-scale Modeling, and Improvement Strategies of it in South-Korea

유역 모델 특성 및 국내 적용 현황과 발전 방향에 대한 검토

  • Received : 2020.09.10
  • Accepted : 2020.11.12
  • Published : 2020.11.30

Abstract

In South Korea, the concept of water environment was expanded to include aquatic ecosystems with the Integrated Water Management implementation. Watershed-scale modeling is typically performed for hydrologic component analysis, however, there is a need to expand to include ecosystem variability such that the modeling corresponds to the social and political issues around the water environment. For this to be viable, the modeling must account for several distinct features in South Korean watersheds. The modeling must provide reasonable estimations for peak flow rate and apply to paddy areas as they represent 11% of land use area and greatly influence groundwater levels during irrigation. These facts indicate that the modeling time intervals should be sub-daily and the hydrologic model must have sufficient power to process surface flow, subsurface flow, and baseflow. Thus, the features required for watershed-scale modeling are suggested in this study by way of review of frequently used hydrologic models including: Agricultural Policy/Environmental eXtender(APEX), Catchment hydrologic cycle analysis tool(CAT), Hydrological Simulation Program-FORTRAN(HSPF), Spatio-Temporal River-basin Ecohydrology Analysis Model(STREAM), and Soil and Water Assessment Tool(SWAT).

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 수생태계 건강성 확보 기술개발사업의 지원을 받아 연구되었습니다.(2020003030004)

References

  1. Arnold, J. G. and Srinivasan, R. (1994). Integration of a basin-scale water quality model with GIS, Water Resources Bulletin, 459-462.
  2. Arnold, J., Kinity, J., Srinivasan, R., Williams, J., Haney, E., and Neitsch, S. (2012). Input/output documentation version 2012, Technical Report, TR-439, Texas Water Resources Institute, Texas, USA.
  3. Bailey, R. T., Wible, T. C., Arabi, M., Records, R. M., and Ditty, J. (2016). Assessing regional-scale temporal patterns of groundwater-surface water interactions using a coupled SWAT-MODFLOW model, Hydrological Processes, 30, 4420-4433. https://doi.org/10.1002/hyp.10933
  4. Bicknell, B. R., Imhoff, J. C., Kittle, J. L., and Donigian, A. S., and Johanson, R. C. (1993). Hydrological simulation program - FORTRAN. User's manual for release 10, U. S. Environmental Protection Agency, Environmental Research Laboratory, Athens, GA.
  5. Bicknell, B. R., Imhoff, J. C., Kittle, J. L. and Donigian, A. S., and Johanson, R. C. (1997). Hydrological simulation program - FORTRAN. User's manual for version 11, EPA/600/R-97/080. U.S. EPA, National Exposure Research Laboratory, Athens, GA.
  6. Bicknell, B. R., Imhoff, J. C., Kittle, J. L., Jobes, T. H., and Donigian, A. S. (2001). Hydrological simulation program - fortran (HSPF). User's manual for release 12, AQUA TERRA Consultants, Mountain view, California, U.S.A.
  7. Bingner, R. L. and Theurer, F. D. (2016). AGNPS Web Site, http://www.ars.usda.gov/Research/docs.htm?docid=5199 (accessed Sep. 2020)
  8. Brown, L. C. and Barnwell, T. O. (1987). The enhanced water quality models QUAL2E and QUAL2E-UNCAS documentation and user manual, EPA/600/3-87/007, United States Environmental Protection Agency (USEPA): Athens, GA, USA.
  9. Cho, H. K. and Kim, S. M. (2019). Estimation of the Hapcheon dam inflow using HSPF model, Journal of the Korean Society of Agricultural Engineers, 61(5), 69-77. [Korean Literature]
  10. Cho, H. L., Jeong, E., and Koo, B. J. (2015a). Development of a hybrid watershed model STREAM: Model structures and theories, Journal of Korea Society of Water Environment, 31(5), 491-506. [Korean Literature] https://doi.org/10.15681/KSWE.2015.31.5.491
  11. Cho, H. L., Jeong, E., and Koo, B. J. (2015b). Development of a hybrid watershed model STREAM: Test application of the model, Journal of Korea Society of Water Environment, 31(5), 507-522. [Korean Literature] https://doi.org/10.15681/KSWE.2015.31.5.507
  12. Choi, M. (2020). Improvement of baseflow load separation method in linking HSPF with WHAT for agricultural NPS management, Doctoral dissertation, Kongju University, Cheonan, Chungnam, 1-124. [Korean Literature]
  13. Choi, S. C., Jang, C., and Kim, H. (2016). Analysis of short-term runoff characteristics of CAT-PEST connected model using different infiltration analysis methods, Journal of the Korea Academia-Industrial cooperation Society, 17(11), 26-41. [Korean Literature] https://doi.org/10.5762/KAIS.2016.17.11.26
  14. Choi, S. C., Kim, M. K., So, K. H., and Jang, T. I. (2016). Application of APEX-PADDY model considering rice cultivation environment, Rural Resource, 58(2), 23-27. [Korean Literature]
  15. Christina, S., Honton, J., Creager, C., Chen, L., Andrews, E. S., and Bozhurt, S. (2007). The altered Laguna: A conceptual model for watershed stewardship, Laguna de Santa Rosa Foundation, Santa Rosa, California, USA.
  16. Chun, D., Faramarzi, M., Smerdon, B., and Alessi, D. S. (2019). Application of an integrated SWAT-MODFLOW model to evaluate potential impacts of climate change and water withdrawals on groundwater-surface water interactios in West-Central Alberta, WATER, 11, 110. https://doi.org/10.3390/w11010110
  17. Climatic Research Unit. (2005). Statistical and regional dynamical downscaling of extremes for European regions, Climatic Research Unit, Norwich, UK.
  18. Cole, T. M. and Wells, S. A. (2011). CE-QUAL-W2-A two-dimensional, laterally averaged, hydrodynamic and wartr-quality model, Version 3.7, Instruction Report EL-11-1; U.S. Army Corps of Engineers: Washington, DC, USA.
  19. Craig, P. M. (2011). User's manual for EFDC Explorer: A pre/post processor for the environmental fluid dynamics code, Dynamic Solutions-International, LLC: Knoxville, TN, USA,
  20. Crawford, N. H. and Linsley, R. S. (1966). Digital simulation in hydrology: The stanford watershed model IV, Technical Report No. 39, Department of Civil Engineering, Stanford University, Palo Alto, California, 1-210.
  21. Environment Agency (EA). (1977). Environmental conservation act, law, No. 3078. [Korean Literature]
  22. Gironas, J., Roesner, L. A., Rossman, L. A., and Davis, J. (2010). A new applications manual for the Storm Water Management Model (SWMM), Environmental Modelling and Software, 25, 813-814. https://doi.org/10.1016/j.envsoft.2009.11.009
  23. Guzman, J. A., Moriasi, D. N., Gowda, P. H., Steiner, J. L., Starks, P. J., Arno ld, J. G., and Srinivasan, R. A. (2015). A model integration framework for linking SWAT and MODFLOW, Environmental Modelling & Software, 73, 103-116. https://doi.org/10.1016/j.envsoft.2015.08.011
  24. Hong, J., Lim, K. J., Shin, Y., and Jung Y. (2015). Quantifying contribution of direct runoff and baseflow to rivers in Han River system, South Korea, Journal of Korea Water Resources Association, 48(4), 309-319. [Korean Literature] https://doi.org/10.3741/JKWRA.2015.48.4.309
  25. Hwang, C. L. and Yoon, K. (1981). Multiple attributes decision making methods and applications, Springer, Heidelberg, Germany.
  26. Hwang, H. S., Rhee, H. P., Lee, S. J., Ahn, K. H., Park, J. H., and Kim, Y. S. (2016). Study on representation of pollutants delivery process using watershed model, Journal of Korean Society on Water Environment, 32(6), 589-599. [Korean Literature] https://doi.org/10.15681/KSWE.2016.32.6.589
  27. Jang, C. H,, Kim, H. J., and Kim, J. T. (2012). Prediction of reservoir water level using CAT, Journal of the Korean Society of Agricultural Engineers, 54(1), 27-38. [Korean Literature] https://doi.org/10.5389/KSAE.2012.54.1.027
  28. Jang, S. S. and Kim, S. J. (2016). Comparison of houly and daily SWAT results for the evaluation of runoff simulation performance, Journal of the Korean Society of Agricultural Engineers, 58(5), 59-69. [Korean Literature] https://doi.org/10.5389/KSAE.2016.58.5.059
  29. Jeong E. and Cho, H. L. (2019). Analysis of impact of climate change on river flows in an agricultural watershed using a semi-distributed watershed model STREAM, Journal of Korean Society on Water Environment, 35(2), 131-144. [Korean Literature] https://doi.org/10.15681/KSWE.2019.35.2.131
  30. Jeong, E., Cho, H. L., and Koo, B. K. (2018). Estimation of pollution loads to the Geum-River estuary for precipitation conditions using a semi-distributed watershed model STREAM, Journal of the Korean Society for Marine Environment Energy, 21(3), 216-227. https://doi.org/10.7846/JKOSMEE.2018.21.3.216
  31. Johanson, R. C., Imhoff, J. C., and Davis, H. H. (1980). User's manual for hydrological simulation program - FORTRAN (HSPF), Research Grant No. R804971- 01. Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA.
  32. Johanson, R. C., Imhoff, J. C., Kittle, J. L., and Donigian, A. S. (1984). Hydrological simulation program - FORTRAN (HSPF). User's Manual for Release 8.0, U.S. EPA, EPA-600/3-84-066, Environmental Research Laboratory, Athens, GA.
  33. Jung S. H., Rhee H. P., Hwang H. S., and Yoon C. G. (2019). Study on development of paddy-RCH method to consider discharge characteristics of paddy field in watershed model HSPF, Korean Society of Environmental Engineers, 41(6), 311-320. [Korean Literature] https://doi.org/10.4491/KSEE.2019.41.6.311
  34. Jung, C. G., Park, J. Y., Lee, J. W., Jung, H., and Kim, S. J. (2011). The applicability of SWAT-APEX model for agricultural nonpoint source pollution assessment, Journal of the Korean Society of Agricultural Engineers, 53(5), 35-42. [Korean Literature] https://doi.org/10.5389/KSAE.2011.53.5.035
  35. Kang, B. and Ryu, S. (2011). Comparison of Nash's instantaneous unit hydrograph according to shape factor, Proceedings of the 2011 Conference of the Korea Water Resources Association, Korea Water Resources Association, 415-415. [Korean Literature]
  36. Kang, W. (2016). Evaluation method for stream water quality improvement effect enhancing channel hydraulic Geometry in HSPF model, Doctoral dissertation, Konkuk University, Seoul, 1-146. [Korean Literature]
  37. Kim, E. J., Park, B. K., Kim, Y. S., Rhew, D. H., and Jung, K. W. (2015). A study on development of management targets and evaluation of target achievement for non-point source pollution management in Saemangeum watershed, Journal of Korean Society of Environmental Engineers, 37(8), 480-491. [Korean Literature] https://doi.org/10.4491/KSEE.2015.37.8.480
  38. Kim, E. J., Park, B. K., Shin, D. S., Kim, Y. S., and Rhew, D. H. (2014). The study on methods for setting of water quality goal and estimation of allocation loads on TMDL system using a dynamic water quality model, Journal of Korean Society of Environmental Engineers, 36(6), 629-640. [Korean Literature] https://doi.org/10.4491/KSEE.2014.36.9.629
  39. Kim, H. and Jang, C. H. (2017a). Catchment hydrologic cycle assessment tool - A user guide, Korea Institute of Civil Engineering and Building Technology, Korea. [Korean Literature]
  40. Kim, H. J. and Jang, C. H. (2017b). Catchment hydrologic cycle assessment tool user's manual (CAT 3.0), Korea Institute of Civil Engineering and Building Technology.
  41. Kim, N. W., Chung, I. M., and Won Y. S. (2004a). The development of fully coupled SWAT-MODFLOW model (I) model development, Journal of Korean Water Resources Association, 37(6), 499-507. [Korean Literature] https://doi.org/10.3741/JKWRA.2004.37.6.499
  42. Kim, N. W., Chung, I. M., and Won Y. S. (2004b). The development of fully coupled SWAT-MODFLOW model (II) evaluation of model, Journal of Korean Water Resources Association, 37(6), 509-515. [Korean Literature] https://doi.org/10.3741/JKWRA.2004.37.6.509
  43. Kim, N. W., Lee, J. E., Chung, I. M., and Kim, D. P. (2008). Hydrologic component analysis of the Seolma-Cheon watershed by using SWAT-K model, Journal of Environmental Science International, 17(12), 1363-1372. https://doi.org/10.5322/JES.2008.17.12.1363
  44. Kim, S. R. and Kim, S. M. (2018). Evaluation of HSPF model applicability for runoff estimation of 3 sub-watershed in Namgang dam watershed, Journal of Korean Society on Water Environment, 34(3), 328-338. [Korean Literature] https://doi.org/10.15681/KSWE.2018.34.3.328
  45. Kim, S. R. and Kim, S. M. (2020). Analysis of livestock nonpoint source pollutant load ratio for each sub-watershed in Sancheong watershed using HSPF model, Journal of the Korean Society of Agricultural Engineers, 62(1), 39-50. [Korean Literature] https://doi.org/10.5389/KSAE.2020.62.1.039
  46. Kim, Y. W., Lee, J. W., and Kim, S. J. (2018). Analysis of extreme cases of climate change impact on watershed hydrology and flow duration in Geum river basin using SWAT and STARDEX, Journal of Korean Water Resources Association, 51(10), 905-916. [Korean Literature]
  47. Knisel, W. G. (1980). GREAMS: A field-scale model for chemicals, runoff and erosion from agricultural management systems, Conservation research report 26, USDA, Washington, DC, USA.
  48. Koo J., Lee, S., J. Kim, M. K., Jung, J., and Lim, K. J. (2016). Analysis of suitable soil loss equations in the APEX model, 2016 Korea Water Resources Association Conference, 173-173.
  49. Korea Environment Institute (KEI). (2017). A study on essential principles and policy roadmap for the integrated water resources management, 2017-11, Korea Environment Institute, 21-27. [Korean Literature]
  50. Kwon, K. and Choi, K. S. (2017). A study of nonpoint source pollutants loads in each watershed of Nakdong river basin with HSPF, Journal of Environmental Impact Assessment, 26(1), 68-77. [Korean Literature] https://doi.org/10.14249/eia.2017.26.1.68
  51. Lee, D., Han, J. H., Park, M. J., Engel, B. A., Kim, J., Lim, K. J., and Jang, W. S. (2019). Development of advanced web-based SWAT LUC system considering yearly land use changes and recession curve characteristics, Ecological Engineering, 128, 39-47. https://doi.org/10.1016/j.ecoleng.2019.01.001
  52. Lee, H., Kim, K., Song, J. H., Lee, D. G., Rhee, H. P., and Kang, M. S. (2019). Pollutant delivery ratio of Okdong-cheon waterhsed using HSPF model, Journal of the Korean Society of Agricultural Engineers, 61(1), 9-20. [Korean Literature] https://doi.org/10.5389/KSAE.2019.61.1.009
  53. Lee, J. W., Jung, C. G., Woo, S. Y., and Kim, S. J. (2019). Evaluation of stream flow and water quality behavior by weir operation in Nakdong river basin using SWAT, Journal of Korean Water Resources Association, 52(5), 349-360. [Korean Literature]
  54. Lee, S. C., Kim, H. Y., Kim, H. J., Han, J. H., Kim, S. J., Kim, J., and Lim, K. J. (2017). Analysis of baseflow contribution based on time-scales using various baseflow separation methods, Journal of the Korean Society of Agricultural Engineers, 59(2), 1-11. [Korean Literature] https://doi.org/10.5389/KSAE.2017.59.2.001
  55. Lee, T. (2016). Assessment of sediment and total phosphorus loads using SWAT in Oenam watershed, Hwasun, Jeollnam-do, Journal of the Association of Korean Geographs, 22(1), 240-250. [Korean Literature]
  56. Leonard, R., Knisel, W., and Still, D. (1987). GLEAMS: Groundwater loading effects on agricultural management system, Transactions of the American Society of Agricultural Engineers, 30, 1403-1428. https://doi.org/10.13031/2013.30578
  57. McDonald, M, G. and Harbaugh, A. W. (1983). A modular three-dimensional finite-difference ground water flow model, USGS Open-File Report 83-872, U. S. Geological Survey, Reston, VA, USA.
  58. Ministry of Environment (ME). (1991). Water quality environment conservation act, Law, No. 4260. [Korean Literature]
  59. Ministry of Environment (ME). (2007). Enforcement decree of the water quality and aquatic ecosystem conservation act, Law, No. 8466. [Korean Literature]
  60. Ministry of Environment (ME). (2017). Enforcement decree of the water environment conservation act, Law, No. 14532. [Korean Literature]
  61. Ministry of Environment (ME). (2018a). Enforcement decree of the act on the investigation, planning, and management of water resources, Law, No. 15624. [Korean Literature]
  62. Ministry of Environment (ME). (2018b). Act on construction of dams and assistance, ETC, to their environs, Law, No. 14532. [Korean Literature]
  63. Ministry of Environment (ME). (2018c). Special act on the utilization of waterfronts, Law, No. 14532. [Korean Literature]
  64. Ministry of Environment (ME). (2019a). Framework act on water management, Law, No. 15653. [Korean Literature]
  65. Ministry of Environment (ME). (2019b). Act on development of water management technologies and on promotion of water industry, Law, No. 15654. [Korean Literature]
  66. Ministry of Environment (ME). (2020). Water Environment Information System (WEIS), http://water.nier.go.kr/publicMain/mainContent.do (accessed Sep. 2020)
  67. Ministry of Health and Social Affairs (MHS). (1971). Pollution control act, Law, No. 2305. [Korean Literature]
  68. Ministry of Land, Infrastructure and Transport (MOLIT). (2011). A comprehensive plan for water resources, 11-1611000-002114-13, Ministry of Land, Infrastructure and Transport, 18-77. [Korean Literature]
  69. Ministry of Land, Infrastructure and Transport (MOLIT). (2020). MOLIT Statistics System, http://stat.molit.go.kr/portal/cate/engStatListPopup.do (accessed Sep. 2020)
  70. Ministry of Public Administration and Security (MPAS). (2018). Government organization act, Law, No. 15624. [Korean Literature]
  71. Mohammad K., Cho, J., Choi, S. K., Song, J. H., Song, I., and Hwang, S. (2020). Evaluating the performance of APEX-paddy model using the monitoring data of paddy fields in Iksan, South Korea, Journal of the Korean Society of Agricultural Engineers, 62(1), 1-16. https://doi.org/10.5389/KSAE.2020.62.1.001
  72. Moriasi, D. N., Naresh, P., Steiner, J. L, Gowda, P. H., Winchell, M., Rathjens, H., Starks, P. J., and Verser, A. (2019). SWAT-LUT: A desktop graphical user interface for updating land use in SWAT, Journal of the American Water Resources Association, 55(5), 1102-1115. https://doi.org/10.1111/1752-1688.12789
  73. National Institute of Agricultural Sciences (NAS). (2015). Agricultural policy/environmental exdenter model user's manual <0806 ver.>, National Institute of Agricultural Sciences, Wanju. [Korean Literature]
  74. National Institute of Environmental Research (NIER). (2012). An advanced study on the modification and enhancement of HSPF model to improve the water quality prediction, NIER-RP-2012-268, NIER, 20-32. [Korean Literature]
  75. Oh, C., Jeong, E., and Choi, J. (2015). Analysis on efficiency of non-point source pollutant reduction measures for paddy field in Saemangeum watershed, Korean National Committee on Irrigation and Drainage, 22(2), 31-43. [Korean Literature]
  76. Pai, N. and Saraswat, D. (2011). SWAT2009_LUC: A tool to activate the land use change module in SWAT 2009, Transactions of the American Society of Agricultural and Biological Engineers, 54(5), 1645-1658.
  77. Park, J. H. and Hur, Y. T. (2012). Development and application of GIS based K-DRUM for flood runoff simulation using radar rainfall, Journal of Hydro-environment Research, 6(3), 209-219. https://doi.org/10.1016/j.jher.2011.05.005
  78. Park, S. J., Kang, H. Y., Hwang, S. H., and Moon, Y. I. (2015). Study on the estimation method of storage constants based on basin shape factor at design flood estimation, Proceedings of the 2015 Conference of the Korea Water Resources Association, Korea Water Resources Association, 508-508. [Korean Literature]
  79. Park, S., Kim, H., and Jang, C. (2019). Analysis of streamflow characteristics of Boryeong-dam watershed using global optimization technique by infiltration methods of CAT, Journal of the Korea Academia-Industrial cooperation Society, 20(2), 412-424. [Korean Literature] https://doi.org/10.5762/KAIS.2019.20.2.412
  80. Seo, M., Yen, H., Kim, M. K., and Jeong, J. (2014). Tranferability of SWAT mo dels between SWAT2009 and SWAT2012, Journal of Environmental Quality, 43, 869-880. https://doi.org/10.2134/jeq2013.11.0450
  81. Shanon, C. E. and Weaver, W. (1949). The mathematical theory of communication, University of Illinois Press, London and New York.
  82. Song, H. W., Lee, H. W., Choi, J. H., and, Park, S. S. (2009). Application of HSPF model for effect analyses of watershed management plans on receiving water qualities, Korean Society of Environmental Engineers, 31(5), 358-363. [Korean Literature]
  83. Sophocleous, M. A., Koelliker, J. K., Govindaraju, R. S., Ramireddygari, S. R., and Perkins, S. P. (1999). Integrated numerical modeling for basin-wide water management: The case of the Rattlesnake Creek basin in south-central Kansas, Journal of Hydrology, 214, 179-196. https://doi.org/10.1016/S0022-1694(98)00289-3
  84. Sung, J. H., Kim, B. S., Kang, H. S., and Cho, C. H. (2012). Non-stationary frequency analysis for extreme precipitation based on representative concentration pathways (RCP) climate change scenarios, Korean Society of Hazard Mitigation, 12(2), 231-244. [Korean Literature]
  85. Tea, E. A., Chae, M. H., Cho, Y. H., Cheon, S. U., Kil, G. B., and Cho, H. J. (2019). Evaluation of pollution load reduction effect on algae in Daecheong lake using a SWAT model, Journal of Environmental Analysis, Health and Toxicology, 22(4), 207-216. [Korean Literature] https://doi.org/10.36278/jeaht.22.4.207
  86. Tsuchiya, R., Kato, T., Jeong, J., and Arnold, J. G. (2018). Development of SWAT-Paddy for simulating lowland paddy fields, Sustainability, 10, 3246. https://doi.org/10.3390/su10093246
  87. United States Environmental Protection Agency (U. S. EPA). (2000). Estimating hydrology and hydraulic parameters for HSPF; Technical Note 6, EPA-823-R00-012; Office of Water, U.S. EPA: Washington, DC, USA, 8-30.
  88. Williams, J. R., Izaurralde, R. C., and Steglich, E. M. (2008). Agricultural policy/environmental extender model user's manual version 0604, BREC Report #2008-16. Blackland Research and Extension Center.
  89. Williams, J. R., Izaurralde, R. C., and Steglich, E. M. (2012). Agricultural policy/environmental extender model theoretical documentation, Agrilife Research Texas A&M System. Temple, Texas.
  90. Williams, J., Jones, C., and Dyke, P. (1984). A modeling approach to determining the relationship between erosion and soil productivity, Transactions of the American Society of Agricultural Engineers, 27, 129-144. https://doi.org/10.13031/2013.32748
  91. Williams, J., Nicks, A., and Arnold, J. (1985). Simulator for water resources in rural basins, Journal of Hydraulic Engineering, 111, 970-986. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:6(970)
  92. Won, K. J., Sung, J. H., and Chung, E. S. (2015). Parameteric assessment of water use vulnerability of South Korea using SWAT model and TOPSIS, Journal of Korean Water Resources Association, 48(8), 647-657. https://doi.org/10.3741/JKWRA.2015.48.8.647
  93. Woo, S. Y., Jung, C. G., Kim, J. U., and Kim, S. J. (2018). Assessment of climate change impact on aquatic ecology health indices in Han river using SWAT and random forest, Journal of Korean Water Resources Association, 51(10), 863-874. [Korean Literature]