DOI QR코드

DOI QR Code

Characterizing Spatiotemporal Variations and Mass Balance of CO2 in a Stratified Reservoir using CE-QUAL-W2

CE-QUAL-W2를 이용한 성층 저수지에서 CO2의 시공간적 분포 및 물질수지 분석

  • Received : 2020.08.31
  • Accepted : 2020.11.16
  • Published : 2020.11.30

Abstract

Dam reservoirs have been reported to contribute significantly to global carbon emissions, but unlike natural lakes, there is considerable uncertainty in calculating carbon emissions due to the complex of emission pathways. In particular, the method of calculating carbon dioxide (CO2) net atmospheric flux (NAF) based on a simple gas exchange theory from sporadic data has limitations in explaining the spatiotemporal variations in the CO2 flux in stratified reservoirs. This study was aimed to analyze the spatial and temporal CO2 distribution and mass balance in Daecheong Reservoir, located in the mid-latitude monsoon climate zone, by applying a two-dimensional hydrodynamic and water quality model (CE-QUAL-W2). Simulation results showed that the Daecheong Reservoir is a heterotrophic system in which CO2 is supersaturated as a whole and releases CO2 to the atmosphere. Spatially, CO2 emissions were greater in the lacustrine zone than in the riverine and transition zones. In terms of time, CO2 emissions changed dynamically according to the temporal stratification structure of the reservoir and temporal variations of algae biomass. CO2 emissions were greater at night than during the day and were seasonally greatest in winter. The CO2 NAF calculated by the CE-QUAL-W2 model and the gas exchange theory showed a similar range, but there was a difference in the point of occurrence of the peak value. The findings provide useful information to improve the quantification of CO2 emissions from reservoirs. In order to reduce the uncertainty in the estimation of reservoir carbon emissions, more precise monitoring in time and space is required.

Keywords

Acknowledgement

이 논문은 2020학년도 충북대학교 연구년제 사업의 연구비 지원에 의하여 연구되었음.

References

  1. Arhonditsis, G., Neumann, A. G., Shimoda, Y., Kim, D. K., Dong, F., Onandia, G., Yang, C., Javed, A., Brady, M., Visha, A., Ni, F., and Cheng, V. (2019). Castles built on sand or predictive limnology in action? Part A: Evaluation of an integrated modelling framework to guide adaptive management implementation in lake Erie, Ecological Informatics, 53, 100968. https://doi.org/10.1016/j.ecoinf.2019.05.014
  2. Ballantyne, A. P., Andres, R., Houghton, R., Stocker, B. D., Wanninkhof, R., Anderegg, W., Cooper, L. A., DeGrandpre, M., Tans, P. P., Miller, J. B., Alden, C., and White, J. W. C. (2015). Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty, Biogeosciences, 12, 2565-2584. https://doi.org/10.5194/bg-12-2565-2015
  3. Bastien, J., Demarty, M., and Tremblay, A. (2011). CO2 and CH4 diffusive and degassing fluxes from 2003 to 2009 at Eastmain 1 reservoir, Quebec, Canada, Inland Waters, 1(2), 113-123. https://doi.org/10.5268/IW-1.2.349
  4. Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A., and Tranvik, L. J. (2009). The boundless carbon cycle, Nature Geoscience, 2, 598-600. https://doi.org/10.1038/ngeo618
  5. Beaulieu, J. J., Nietch, C. T., and Young, J. L. (2014). Controls on nitrous oxide production and consumption in reservoirs of the Ohio river basin, Journal of Geophysical Research: Biogeosciences, 120, 1995-2010. https://doi.org/10.1002/2015JG002941
  6. Bocaniov, S. A., Smith, R. E. H., Spillman, C. M., Hipsey, M. R., and Leon, L. F. (2014). The near-shore shunt and the decline of the phytoplankton spring bloom in the Laurentian Great Lakes: insights from a three-dimensional lake model, Hydrobiologia, 731, 151-172. https://doi.org/10.1007/s10750-013-1642-2
  7. Chung, S. W. and Oh, J. K. (2006). Calibration of CE-QUAL-W2 for a monomictic reservoir in monsoon climate area, Water Science and Technology, 54(12), 29-37. https://doi.org/10.2166/wst.2006.841
  8. Chung, S. W., Oh, J. G., and Ko, I. H. (2005). Simulations of temporal and spatial distributions of rainfall-induced turbidity flow in a reservoir using CE-QUAL-W2, Journal of Korea Water Resources Association, 38(8), 655-664. [Korean literature] https://doi.org/10.3741/JKWRA.2005.38.8.655
  9. Chung, S. W., Park, J. H., Kim, Y. K., and Yoon, S. W. (2007). Application of CE-QUAL-W2 to Daecheong reservoir for eutrophication simulation, Journal of Korean Society on Water Environment, 23(1), 52-63. [Korean literature]
  10. Cole, J. J., Caraco, N. F., Kling, G. W., and Kratz, T. K. (1994). Carbon dioxide supersaturation in the surface waters of lakes, Science, 265, 1568-1570. https://doi.org/10.1126/science.265.5178.1568
  11. Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., and Melack, J. (2007). Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget, Ecosystems, 10, 171-184.
  12. Cole, T. M. and Tillman, D. H. (1999). Water quality modeling of lake Monroe using CE-QUAL-W2, Environmental Science, Oxford: Elsevier.
  13. Cole, T. M. and Tillman, D. H. (2001). Water quality modeling of Allatoona and West point reservoir using CE-QUAL-W2, U.S. Army Corps of Engineers.
  14. Cole, T. M. and Wells, S. A. (2017). CE-QUAL-W2: a two-dimensional, later ally averaged, hydrodynamic and water quality model, Version 4.1 User Manual, Department of Civil and Environmental Engineering, Potland University.
  15. Curtarelli, M. P., Ogashawara, I., Araujo, C. A. S., Lorenzzetti, J. A., Leao, J. A. D., Alcântara, E., and Stech, J. L. (2016). Carbon dioxide emissions from Tucurui reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations, Science of Total Environment, 551-552, 676-694. https://doi.org/10.1016/j.scitotenv.2016.02.001
  16. Deemer, B. R., Harrison, J. A., Li, S., Beaulieu, J. J., DelSontro, T., Barros, N., Bezerra-neto, J. F., Powers, S. M., Santos, M., and Vonk, J. A. (2016). Greenhouse gas emissions from reservoir water surfaces: A new global synthesis, Bioscience, 66(11), 949-964. https://doi.org/10.1093/biosci/biw117
  17. DelSontro, T., Beaulieu, J. J., and Downing, J. A. (2018). Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change, Limnology and Oceanography letters, 3(3), 64-75. https://doi.org/10.1002/lol2.10073
  18. Demarty, M., Bastien, J., and Tremblay, A. (2011). Annual follow-up of gross diffusive carbon dioxide and methane emissions from a boreal reservoir and two nearby lakes in Quebec, Canada, Biogeosciences, 8, 41-53. https://doi.org/10.5194/bg-8-41-2011
  19. Downing, J. A., Cole, J. J., Middelburg, J. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Prairie, Y. T., and Laube, K. A. (2008). Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century, Global Biogeochemical Cycles, 22, GB1018. https://doi.org/10.1029/2006GB002854
  20. Eugster, W., Kling, G., Jonas, T., McFadden, J. P., Wuest, A., MacIntyre, S., and Chapin, F. S. (2003). CO2 exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake: Importance of convective mixing, Journal of Geophysical Research: Atmospheres, 108, 4362 https://doi.org/10.1029/2002jd002653
  21. Gelda, R. K., Auer, M. T., Effler, S. W., Chapra, S. C., and Storey, M. L. (1996). Determination of reaeration coefficients: A whole lake approach, Journal of Environmental Engineering, 122(4), 269-275. https://doi.org/10.1061/(ASCE)0733-9372(1996)122:4(269)
  22. Golub, M. (2016). Controls on temporal variation in ecosystem-atmosphere carbon dioxide exchange in lakes and reservoirs, Department of Freshwater and Marine Sciences, Doctoral dissertation, Ph.D., WV, USA : University of Wisconsin-Madison.
  23. Imberger, J. and Patterson, J. C. (1989). Physical limnology, Advances in applied mechanics, 27, 303-475. https://doi.org/10.1016/S0065-2156(08)70199-6
  24. Kortelainen, P., Rantakari, M., Huttunen, J. T., Mattsson, T., Alm, J., Juutinen, S., Larmola, T., Silvola, J., and Martikainen, P. J. (2006). Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes, Global Change Biology, 12, 1554-1567. https://doi.org/10.1111/j.1365-2486.2006.01167.x
  25. Lombardo, C. P. and Gregg, M. C. (1989). Similarity scaling of viscous and thermal dissipation in a convective surface boundary layer, Journal of Geophysical Research, 94(C5), 6273-6284. https://doi.org/10.1029/JC094iC05p06273
  26. MacIntyre. S., Jonsson, A., Jansson, M., Aberg, J., Turney, D. E., and Miller, S. D. (2010). Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake, Geophysical Research Letters, 37(24), L24604. https://doi.org/10.1029/2010GL044164
  27. Martin, J. and Mccutcheon, S. (1999). Hydrodynamics and transport for water quality modeling, CRC Press.
  28. McClure, R. P., Hamre, K. D., Niederlehner, B. R., Munger, Z. W., Chen, S., Lofton, M. E., Schreiber, M. E., and Carey, C. C. (2018). Metalimnetic oxygen minima alter the vertical profiles of carbon dioxide and methane in a managed freshwater reservoir, Science of The Total Environment, 636, 610-620. https://doi.org/10.1016/j.scitotenv.2018.04.255
  29. McCullough, I. M., Dugan, H. A., Farrell, K. J., Morales-Williams, A. M., Ouyang, Z., Roberts, D., Scordo, F., Bartlett, S. L., Burke, S. M., Doubek, J. P., Krivak-Tetley, F. E., Skaff, N. K., Summers, J. C., Weathers, K. C., and Hanson, P. C. (2018). Dynamic modeling of organic carbon fates in lake ecosystems, Ecological Modelling, 386, 71-82. https://doi.org/10.1016/j.ecolmodel.2018.08.009
  30. McDonald, C. P., Stets, E. G., Striegl, R. G., and Butman, D. (2013). Inorganic carbon loading as a primary driver of dissolved carbon dioxide concentrations in the lakes and reservoirs of the contiguous United States, Global Biogeochemical Cycles, 27, 285-295. https://doi.org/10.1002/gbc.20032
  31. Park, H. S. and Chung, S. W. (2018). pCO2 dynamics of stratified reservoir in yemperate zone and CO2 pulse emissions during turnover events, Water, 10, 1347. https://doi.org/10.3390/w10101347
  32. Prairie, Y., Alm, J., Beaulieu, J., Barros, N., Battin, T., Cole, J., Giorgio, P., DelSontro, T., Guerin, F., Harby, A., Harrison, J., Mercier-Blais, S., Serca, D., Sobek, S., and Vachon, D. (2018). Greenhouse gas emissions from freshwater reservoirs: What does the atmosphere see?, Ecosystems, 21, 1058-1071. https://doi.org/10.1007/s10021-017-0198-9
  33. Tan, Z., Zhuang, Q., Shurpali, N., Marushchak, M., Biasi, C., Eugster, W., and Katey, W. A. (2017). Modeling CO2 emissions from Arctic lakes: Model development and site-level study, Journal of Advances in Modeling Earth Systems, 9.
  34. Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B., Kortelainen, P. L., Kutser, T., Larsen, S., Laurion, I., Leech, D. M., McCallister, S. L., McKnight, D. M., Melack, J. M., Overholt, E., Porter, J. A., Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S., Schindler, D. W., Sobek, S., Tremblay, A., Vanni, M. J., Verschoor, A. M., von Wachenfeldt, E., and Weyhenmeyer, G. A. (2009). Lakes and reservoirs as regulators of carbon cycling and climate, Limnology Oceanography, 54, 2298-2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298
  35. Verhamme, E. M., Redder, T. M., Schlea, D. A., Grush, J., Bratton, J. F., and DePinto, J. V. (2016). Development of the Western Lake Erie Ecosystem Model (WLEEM): application to connect phosphorus loads to cyanobacteria biomass, Journal of Great Lakes Research, 42(6), 1193-1205. https://doi.org/10.1016/j.jglr.2016.09.006
  36. Wang, W., Roulet, N. T., Kim, Y. I., Strachan, I. B., Giorgio, P., Prairie, Y. T., and Tremblay, A. (2018). Modelling CO2 emissions from water surface of a boreal hydroelectric reservoir, Science of The Total Environment, 612, 392-404. https://doi.org/10.1016/j.scitotenv.2017.08.203
  37. Wetzel, R. G. (1983). Periphyton of freshwater ecosystems, Developments in hydrobiology: Hydrobioogia.
  38. Winslow, L. A., Read, J. S., Hanson, P. C., and Stanley, E. H. (2013). Lake shoreline in the contiguous United States: Quantity, distribution and sensitivity to observation resolution, Freshwater biology, 59(2), 213-223. https://doi.org/10.1111/fwb.12258