DOI QR코드

DOI QR Code

Development of Forecast Algorithm for Coronal Mass Ejection Speed and Arrival Time Based on Propagation Tracking by Interplanetary Scintillation g-Value

  • Received : 2019.12.20
  • Accepted : 2020.02.13
  • Published : 2020.03.15

Abstract

We have developed an algorithm for tracking coronal mass ejection (CME) propagation that allows us to estimate CME speed and its arrival time at Earth. The algorithm may be used either to forecast the CME's arrival on the day of the forecast or to update the CME tracking information for the next day's forecast. In our case study, we successfully tracked CME propagation using the algorithm based on g-values of interplanetary scintillation (IPS) observation provided by the Institute for Space-Earth Environmental Research (ISEE). We were able to forecast the arrival time (Δt = 0.30 h) and speed (Δv = 20 km/s) of a CME event on October 2, 2000. From the CME-interplanetary CME (ICME) pairs provided by Cane & Richardson (2003), we selected 50 events to evaluate the algorithm's forecast capability. Average errors for arrival time and speed were 11.14 h and 310 km/s, respectively. Results demonstrated that g-values obtained continuously from any single station observation were able to be used as a proxy for CME speed. Therefore, our algorithm may give stable daily forecasts of CME position and speed during propagation in the region of 0.2-1 AU using the IPS g-values, even if IPS velocity observations are insufficient. We expect that this algorithm may be widely accepted for use in space weather forecasting in the near future.

Keywords

References

  1. Armstrong JW, Coles WA, Analysis of three-station interplanetary scintillation, J. Geophys. Res. 77, 4602-4610 (1972). https://doi.org/10.1029/ja077i025p04602
  2. Brueckner GE, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, et al., The large angle spectroscopic coronagraph (LASCO) visible light coronal imaging and spectroscopy, Solar Phys. 162, 357-402 (1995). https://doi.org/10.1007/bf00733434
  3. Cane HV, Richardson IG, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996-2002, J. Geophys. Res. 108, 1156 (2003). https://doi.org/10.1029/2002JA009817
  4. Chen J, Theory of prominence eruption and propagation: interplanetary consequences, J. Geophys. Res. 101, 27499-27519 (1996). https://doi.org/10.1029/96JA02644
  5. Choi KC, Park MY, Kim JH, Auto-detection of halo CME parameters as the initial condition of solar wind propagation, J. Astron. Space Sci. 34, 315-330 (2017). https://doi.org/10.5140/JASS.2017.34.4.315
  6. Coles WA, Kaufman JJ, Solar wind velocity estimation from multi-station IPS, Radio Sci. 13, 591-597 (1978). https://doi.org/10.1029/rs013i003p00591
  7. Dryer M, Interplanetary studies: propagation of disturbances between the Sun and the magnetosphere, Space Sci. Rev. 67, 363-419 (1994). https://doi.org/10.1007/BF00756075
  8. Gapper GR, Hewish A, Purvis A, Duffett-Smith PJ, Observing interplanetary disturbances from the ground, Nature 296, 633-636 (1982). https://doi.org/10.1038/296633a0
  9. Gonzalez-Esparza JA, Carrillo A, Andrade E, Enriquez RP, Kurtz S, The MEXART interplanetary scintillation array in Mexico, Geofis. Int. 43, 61-73 (2004).
  10. Gopalswamy N, Lara A, Yashiro S, Kaiser ML, Howard RA, Predicting the 1-AU arrival times of coronal mass ejections, J. Geophys. Res. 106, 29207-29217 (2001). https://doi.org/10.1029/2001JA000177
  11. Gosling JT, Coronal mass ejections and magnetic flux ropes in interplanetary space, in Physics of Magnetic Flux Ropes, eds. Russell CT, Priest ER, Lee LC (American Geophysical Union, Washington, DC, 1990). https://doi.org/10.1029/GM058p0343
  12. Iwai K, Shiota D, Tokumaru M, Fujiki K, Den M, Kubo Y, Development of a coronal mass ejection arrival time forecasting system using interplanetary scintillation observations, Earth Planets Space. 71, 39 (2019). https://doi.org/10.1186/s40623-019-1019-5
  13. Jackson BV, Hick PL, Kojima M, Yokobe A, Heliospheric tomography using interplanetary scintillation observations: 1. combined Nagoya and Cambridge data, J. Geophys. Res. 103, 12049-12067 (1998). https://doi.org/10.1029/97ja02528
  14. Kim JH, Chang HY, Association between solar variability and teleconnection index, J. Astron. Space Sci. 36, 149-157 (2019). https://doi.org/10.5140/JASS.2019.36.3.149
  15. Kim KH, Moon YJ, Cho KS, Prediction of the 1-AU arrival times of CME-associated interplanetary shocks: evaluation of an empirical interplanetary shock propagation model, J. Geophys. Res. 112, A05104 (2007). https://doi.org/10.1029/2006JA011904
  16. Kim RS, Cho KS, Kim KH, Park YD, Moon YJ, et al., CME earthward direction as an important geoeffectiveness indicator, Astrophys. J. 677, 1378-1384 (2008). https://doi.org/10.1086/528928
  17. Kim RS, Cho KS, Moon YJ, Kim YH, Yi Y, et al., Forecast evaluation of the coronal mass ejection (CME) geoeffectiveness using halo CMEs from 1997 to 2003, J. Geophys. Res. 110, A11104 (2005). https://doi.org/10.1029/2005JA011218
  18. Kim RS, Gopalswamy N, Cho KS, Moon YJ, Yashiro S, Propagation characteristics of CMEs associated with magnetic clouds and ejecta, Solar Phys. 284:77-88 (2013). https://doi.org/10.1007/s11207-013-0230-y
  19. Kojima M, Kakinuma T, Solar cycle dependence of global distribution of solar wind speed, Space Sci. Rev. 53, 173-222 (1990). https://doi.org/10.1007/BF00212754
  20. Manoharan PK, Gopalswamy N, Yashiro S, Lara A, Michalek G, et al., Influence of coronal mass ejection interaction on propagation of interplanetary shocks, J. Geophys. Res. 109, 6109 (2004). https://doi.org/10.1029/2003JA010300
  21. Manoharan PK, Subrahmanya CR, Chengalur JN, Space weather and solar wind studies with OWFA, J. Astrophys. Astron. 38, 16 (2017). https://doi.org/10.1007/s12036-017-9435-z
  22. Moon YJ, Dryer M, Smith Z, Park YD, Cho KS, A revised shock time of arrival (STOA) model for interplanetary shock propagation: STOA-2, Geophys. Res. Lett. 29, 1390 (2002). https://doi.org/10.1029/2002GL014865
  23. Morgan JS, Macquart JP, Chhetri R, Ekers RD, Tingay SJ, et al., Interplanetary scintillation with the Murchison Widefield Array V: an all-sky survey of compact sources using a modern low-frequency radio telescope, Publ. Astron. Soc. Aust. 36, E002 (2019). https://doi.org/10.1017/pasa.2018.40
  24. Mostl C, Isavnin A, Boakes PD, Kilpua EKJ, Davies JA, et al., Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory, Space Weather 15, 955-970 (2017). https://doi.org/10.1002/2017SW001614
  25. Odstrcil D, Modeling 3-D solar wind structure, Adv. Space Res. 32, 497-506 (2003). https://doi.org/10.1016/S0273-1177(03)00332-6
  26. Rollett T, Mostl C, Isavnin A, Davies JA, Kubicka M, et al., ElEvoHI: a novel CME prediction tool for heliospheric imaging combining an elliptical front with drag-based model fitting, Astrophys. J. 824, 131 (2016). https://doi.org/10.3847/0004-637X/824/2/131
  27. Tokumaru M, Kojima M, Fujiki K, Yamashita M, Yokobe A, Toroidal-shaped interplanetary disturbance associated with the halo coronal mass ejection event on 14 July 2000, J. Geophys. Res. 108, 1220 (2003). https://doi.org/10.1029/2002JA009574
  28. Tokumaru M, Kojima M, Fujiki K, Yokobe A, Three-dimensional propagation of interplanetary disturbances detected with radio scintillation measurements at 327 MHz, J. Geophys. Res. 105, 10435-10453 (2000). https://doi.org/10.1029/2000ja900001