DOI QR코드

DOI QR Code

Simulation Study of Solar Wind Interaction with Lunar Magnetic Fields

  • Choi, Cheong Rim (Department of Astronomy and Space Science, Chungbuk National University) ;
  • Dokgo, Kyunghwan (Southwest Research Institute) ;
  • Woo, Chang Ho (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Min, Kyoung Wook (Department of Physics, Korea Advanced Institute of Science and Technology)
  • Received : 2020.01.29
  • Accepted : 2020.02.13
  • Published : 2020.03.15

Abstract

Particle-in-cell simulations were performed to understand the interaction of the solar wind with localized magnetic fields on the sunlit surface of the Moon. The results indicated a mini-magnetosphere was formed which had a thin magnetopause with the thickness of the electron skin depth. It was also found that the solar wind penetrated into the cavity of the magnetosphere intermittently rather than in a steady manner. The solar wind that moved around the magnetosphere was observed to hit the surface of the Moon, implying that it may be the cause of the lunar swirl formation on the surface.

Keywords

References

  1. Bamford RA, Kellett B, Bradford WJ, Norberg C, Thornton A, et al., Minimagnetospheres above the lunar surface and the formation of lunar swirls, Phys. Rev. Lett. 109, 081101 (2012). https://doi.org/10.1103/PhysRevLett.109.081101
  2. Deca J, Divin A, Lapenta G, Lembege B, Markidis S, et al., Electromagnetic particle-in-cell simulations of the solar wind interaction with lunar magnetic anomalies, Phys. Rev. Lett. 112, 151102 (2014). https://doi.org/10.1103/PhysRevLett.112.151102
  3. Deca J, Divin A, Lembege B, Horanyi M, Markidis S, et al., General mechanism and dynamics of the solar wind interaction with lunar magnetic anomalies from 3-D particle-in-cell simulations, J. Geophys. Res. Space Res. 120, 6443-6463 (2015). https://doi.org/10.1002/2015JA021070
  4. Garrick-Bethell I, Head JW, Pieters CM, Spectral properties, magnetic fields, and dust transport at lunar swirls, Icarus 212, 480-492 (2011). https://doi.org/10.1016/j.icarus.2010.11.036
  5. Glotch TD, Bandfield JL, Lucey PG, Hayne PO, Greenhagen BT, et al., Formation of lunar swirls by magnetic field standoff of the solar wind, Nature Commun. 6, 6189 (2015). https://doi.org/10.1038/ncomms7189
  6. Harnett EM, Winglee RM, Two-dimensional MHD simulation of the solar wind interaction with magnetic field anomalies on the surface of the Moon, J. Geophys. Res. 105, 24997-25007 (2000). https://doi.org/10.1029/2000JA000074
  7. Harnett EM, Winglee RM, 2.5D particle and MHD simulations of mini-magnetospheres at the Moon, J. Geophys. Res. 107, 1421 (2002). https://doi.org/10.1029/2002JA009241
  8. Hemingway DJ, Tikoo SM, Lunar swirl morphology constrains the geometry, magnetization, and origins of lunar magnetic anomalies, J. Geophys. Res. Planets 123, 2223-2241 (2018). https://doi.org/10.1029/2018JE005604
  9. Jiang BN, Wu J, Povinelli LA, The origin of spurious solutions in computational electromagnetics, J. Comput. Phys. 125, 104-123 (1996). https://doi.org/10.1006/jcph.1996.0082
  10. Kallio E, Jarvinen R, Dyadechkin S, Wurz P, Barabash S, et al., Kinetic simulations of finite gyroradius effects in the lunar plasma environment on global, meso, and microscales, Planet. Space Sci. 74, 146-155 (2012). https://doi.org/10.1016/j.pss.2012.09.012
  11. Kim S, Yi Y, Hong IS, Sohn J, Solar insolation effect on the local distribution of lunar hydroxyl, J. Astron. Space Sci. 35, 47-54 (2018). https://doi.org/10.5140/JASS.2018.35.1.47
  12. Lee JK, Maxwell R, Jin H, Baek SM, Ghassemi O, et al., A small lunar swirl and its implications for the formation of the Reiner Gamma magnetic anomaly, Icarus. 319, 869-884 (2019). https://doi.org/10.1016/j.icarus.2018.09.015
  13. Lin RP, Mitchell DL, Curtis DW, Anderson KA, Carlson CW, et al., Lunar surface magnetic fields and their interaction with the solar wind: results from Lunar Prospector, Science. 281, 1480-1484 (1998). https://doi.org/10.1126/science.281.5382.1480
  14. Markidis S, Lapenta G, Uddin R, Multi-scale simulations of plasma with iPIC3D, Math. Comput. Simulat. 80, 1509-1519 (2010). https://doi.org/10.1016/j.matcom.2009.08.038
  15. Ricci P, Lapenta G, Brackbill JU, A simplified implicit Maxwell solver, J. Comput. Phys. 183, 117-141 (2002). https://doi.org/10.1006/jcph.2002.7170
  16. Saito Y, Nishino MN, Fujimoto M, Yamamoto T, Yokota S, et al., Simultaneous observation of the electron acceleration and ion deceleration over lunar magnetic anomalies, Earth Planets Space. 64, 83-92 (2012). https://doi.org/10.5047/eps.2011.07.011
  17. Vu HX, Brackbill JU, CELEST1D: an implicit, fully kinetic model for low-frequency, electromagnetic plasma simulation, Comput. Phys. Commun. 69, 253-276 (1992). https://doi.org/10.1016/0010-4655(92)90165-U
  18. Wieser M, Barabash S, Futaana Y, Holmstrom M, Bhardwaj A, et al., First observation of a mini-magnetosphere above a lunar magnetic anomaly using energetic neutral atoms, Geophys. Res. Lett. 37, L05103 (2010). https://doi.org/10.1029/2009GL041721
  19. Zimmerman MI, Farrell WM, Poppe AR, Kinetic simulations of kilometer-scale mini-magnetosphere formation on the Moon, J. Geophys. Res. Planets, 120, 1893-1903 (2015). https://doi.org/10.1002/2015JE004865