DOI QR코드

DOI QR Code

Frozen Orbits Construction for a Lunar Solar Sail

  • Khattab, Elamira Hend (Department of Astronomy and Space Science, Faculty of Science, Cairo University) ;
  • Radwan, Mohamed (Department of Astronomy and Space Science, Faculty of Science, Cairo University) ;
  • Rahoma, Walid Ali (Department of Astronomy and Space Science, Faculty of Science, Cairo University)
  • Received : 2019.10.09
  • Accepted : 2019.12.12
  • Published : 2020.03.15

Abstract

Frozen orbit is an attractive option for orbital design owing to its characteristics (its argument of pericenter and eccentricity are kept constant on an average). Solar sails are attractive solutions for massive and expensive missions. However, the solar radiation pressure effect represents an additional force on the solar sail that may greatly affect its orbital behavior in the long run. Thus, this force must be included as a perturbation force in the dynamical model for more accuracy. This study shows the calculations of initial conditions for a lunar solar sail frozen orbit. The disturbing function of the problem was developed to include the lunar gravitational field that is characterized by uneven mass distribution, third body perturbation, and the effect of solar radiation. An averaging technique was used to reduce the dynamical problem to a long period system. Lagrange planetary equations were utilized to formulate the rate of change of the argument of pericenter and eccentricity. Using the reduced system, frozen orbits for the Moon sail orbiter were constructed. The resulting frozen orbits are shown by two 3Dsurface (semi-major, eccentricity, inclination) figures. To simplify the analysis, we showed inclination-eccentricity contours for different values of semi-major axis, argument of pericenter, and values of sail lightness number.

Keywords

References

  1. Abd El-Salam FA, El-Tohamy IA, Ahmed MK, Rahoma WA, Rassem MA, Invariant relative orbits for satellite constellations: a second order theory, Appl. Math. Comput. 181, 6-20 (2006). https://doi.org/10.1016/j.amc.2006.01.004
  2. Abd El-Salam FA, Some new locally optimal control laws for sailcraft dynamics in heliocentric orbits, J. Appl. Math. 2013, 353056 (2013). https://doi.org/10.1155/2013/353056
  3. Aorpimai M, Palmer PL, Analysis of frozen conditions and optimal frozen orbit insertion, J. Guid. Control Dynam. 26, 786-793 (2003). https://doi.org/10.2514/2.5113
  4. Brouwer D, Clemence GM, Methods of Celestial Mechanics (Academic Press, New York, NY, 1961).
  5. Carvalho JPS, Elipe A, de Moraes RV, Prado AFBA, Low-altitude, near-polar and near-circular orbits around Europa, Adv. Space Res. 49, 994-1006, (2012a). https://doi.org/10.1016/j.asr.2011.11.036
  6. Carvalho JPS , Mourao DC, Elipe A, Vilhena de Moraes R, Prado AFBA, Frozen orbits around the Europa, Int. J. Bifurcat. Chaos. 22, 1250240 (2012b). https://doi.org/10.1142/S0218127412502409
  7. Carvalho JPS, de Moraes RV, Prado AFBA, Dynamics of artificial satellites around Europa, Math. Probl. Eng. 2013, 182079 (2013). https://doi.org/10.1155/2013/182079
  8. Carvalho JPS, Orbital evolution of a solar sail around a planet, Proc. Ser. Braz. Soc. Comp. Appl. Math. 4, 010017 (2016). https://doi.org/10.5540/03.2016.004.01.0017
  9. Ceriotti M, McInnes CR, Generation of optimal trajectories for earth hybrid pole sitters, J. Guid. Control Dynam. 34, 847-859 (2011). https://doi.org/10.2514/1.50935
  10. Charlotte L, Camilla C, McInnes C, Solar radiation pressure augmented deorbiting from high altitude sun-synchronous orbits, Proceedings of the 4S Symposium 2012, Small Satellites Systems and Services, Portoroz, Slovenia, 4-8 Jun 2012.
  11. Coffey SL, Deprit A, Deprit E, Frozen orbits for satellites close to an Earth-like planet, Celest. Mech. Dyn. Astr. 59, 37-72 (1994). https://doi.org/10.1007/BF00691970
  12. Cui HT, Luo JH, Feng JH, Cui PY, Attitude control of solar sail spacecraft with control boom, J. Astronaut. 29, 560-566 (2008). https://doi.org/10.3873/j.issn.1000-1328.2008.02.031
  13. Elipe A, Lara M, Frozen orbits about the Moon, J. Guid Control Dynam. 26, 238-243 (2003). https://doi.org/10.2514/2.5064
  14. El-Saftawy MI, Motion of a lunar artificial satellite, Master Thesis, Cairo University (1991).
  15. Farres A, Heiligers J, Miguel N, Road Map to L4/L5 with a solar sail, Aerosp. Sci. Technol. 95, 105458 (2019). https://doi.org/10.1016/j.ast.2019.105458
  16. Fu B, Sperber E, Eke F, Solar sail technology: a state of the art review, Prog. Aerosp. Sci. 86, 1-19 (2016). https://doi.org/10.1016/j.paerosci.2016.07.001
  17. Giacaglia GEO, Murphy JP, Felsentreger TL, A semi-analytic theory for the motion of a lunar satellite, Celest. Mech. 3, 3-66 (1970). https://doi.org/10.1007/BF01230432
  18. Gong S, Li J, Baoyin H, Solar sail transfer trajectory from L1 point to sub-L1 point, Aerosp. Sci. Technol. 15, 544-554 (2011). https://doi.org/10.1016/j.ast.2010.10.003
  19. Jerome W, Space Sailing (Gordon and Breach, Yverdon, Switzerland, 1992).
  20. Lara M, Deprit A, Elipe A, Numerical continuation of families of frozen orbits in the zonal problem of artificial satellite theory, Celest. Mech. Dynam. Astr. 62, 167-181 (1995). https://doi.org/10.1007/BF00692085
  21. Liu J, Cui N, Shen F, Rong S, Dynamics of highly-flexible solar sail subjected to various forces, Acta Astronaut. 103, 55-72 (2014a). https://doi.org/10.1016/j.actaastro.2014.06.030
  22. Liu J, Rong S, Shen F, Cui N, Dynamics and control of a flexible solar sail, Math. Probl. Eng. 2014, 868419 (2014b). https://doi.org/10.1155/2014/868419
  23. Masoud A, Rahoma WA, Khattab EH, El-Salam FA, Construction of frozen orbits using fontinuous thrust control theories considering earth oblateness and solar radiation pressure perturbations, J. Astronaut. Sci. 65, 448-469 (2018). https://doi.org/10.1007/s40295-018-0135-y
  24. Masoud A, Rahoma WA, Khattab EH, El-Salam FA, Design of artificial sun-synchronous orbits with main zonal harmonics and solar radiation pressure using continuous low-thrust control strategies, Open Astron. J. 28, 124-130 (2019). https://doi.org/10.1515/astro-2019-0012
  25. McInnes CR, Solar Sailing: Technology, Dynamics and Mission Applications (Springer Praxis, London, UK, 2004).
  26. Meyer KW, Buglia JJ, Desai PN, Lifetimes of lunar satellite orbits, NASA Technical Paper 3394 (1994).
  27. Polites M, Kalmanson J, Mangus D, Solar sail attitude control using small reaction wheels and magnetic torquers, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 222, 53-62 (2008). https://doi.org/10.1243/09544100JAERO250
  28. Rahoma WA, Orbital elements evolution due to a perturbing body in an inclined elliptical orbit, J. Astron. Space Sci. 31 199-204 (2014). https://doi.org/10.5140/JASS.2014.31.3.199
  29. Rahoma WA, Investigating exoplanet orbital evolution around binary star systems with mass loss, J. Astron. Space Sci. 33, 257-264 (2016). https://doi.org/10.5140/JASS.2016.33.4.257
  30. Rahoma WA, Abd El-Salam FA, The effects of moon's uneven mass distribution on the critical inclinations of a lunar orbiter, J. Astron. Space Sci. 31, 285-294 (2014). https://doi.org/10.5140/JASS.2014.31.4.285
  31. Rosborough GW, Ocampo CA, Influence of higher degree zonals on the frozen orbit geometry, Proceedings of the AAS/AIAA Astrodynamics Conference, Durango, CO, 19-22 Aug 1991.
  32. Santos JC, de Moraes RV, Carvalho JS, Stability of frozen orbits around Europa, in American Astronomical Society, DDA meeting #44, id.204.12, May 2013.
  33. Smith, JC, Analysis and application of frozen orbits for the TOPEX mission, in AAS/AIAA Astrodynamics Conference, Williamsburg, VA, 18-20 Aug 1986.
  34. Tresaco E, Elipe A, Carvalho, JPS, Frozen orbits for a solar sail around mercury. J. Guid. Control Dynam. 39, 1659-1666 (2016). https://doi.org/10.2514/1.G001510
  35. Wie B, Murphy D, Solar-sail attitude control design for a sail flight validation mission, J. Spacecr. Rocket. 44, 809-821 (2007). https://doi.org/10.2514/1.22996
  36. Wie B, Solar sail attitude control and dynamics, part 1, J. Guid. Control Dynam. 27, 526-535 (2004a). https://doi.org/10.2514/1.11134
  37. Wie B, Solar sail attitude control and dynamics, part two, J. Guid Control Dynam. 27, 536-544 (2004b). https://doi.org/10.2514/1.11133
  38. Zhigang W, Jiang F, Li J, Artificial Martian frozen orbits and Sunsynchronous orbits using continuous low-thrust control, Astrophys. Space Sci. 352, 503-514, (2014). https://doi.org/10.1007/s10509-014-1962-3
  39. Zubrin R, Wagner R, Clarke AC, The Case for Mars: The Plan to Settle the Red Planet and Why We Must. (Free Press, New York, NY, 2011).