DOI QR코드

DOI QR Code

Sclerotiorin: a Novel Azaphilone with Demonstrated Membrane Targeting and DNA Binding Activity against Methicillin-Resistant Staphylococcus aureus

  • Dasagrandhi, Chakradhar (Department of Microbiology, Krupanidhi Degree College) ;
  • Pandith, Anup (Department for Management of Science and Technology Development, Ton Duc Thang University) ;
  • Imran, Khalid (Department of Microbiology, Krupanidhi Degree College)
  • 투고 : 2020.02.13
  • 심사 : 2020.04.11
  • 발행 : 2020.12.28

초록

The emergence of multi-drug resistant, pathogenic methicillin-resistant Staphylococcus aureus (MRSA) is a threat to global health and has created a need for novel functional therapeutic agents. In this study, we evaluated the underlying mechanisms of the anti-MRSA effect of an azaphilone pigment, sclerotiorin (SCL) from Penicillium sclerotiorum. The antimicrobial activity of SCL was evaluated using agar disc diffusion, broth microdilution, time-kill assays and biophysical studies. SCL exhibits selective activity against Gram positive bacteria including MRSA (range, MIC = 128-1028 ㎍/ml) and exhibited rapid bactericidal action against MRSA with a > 4 log reduction in colony forming units within three hours of administration. Biophysical studies, using fluorescent probes and laser or electron microscopy, demonstrated a SCL dose-dependent alternation in membrane potential (62.6 ± 5.0.4% inhibition) and integrity (> 95 ± 2.3%), and the release of UV260 absorbing materials within 60 min (up to 3.2 fold increase, p < 0.01) of exposure. Further, SCL localized to the cytoplasm and hydrolyzed plasmid DNA. While in vitro checkerboard studies revealed that SCL potentiated the antimicrobial activity of topical antimicrobials such as polymixin, neomycin, and bacitracin (Fractional Inhibitory Concentration Index range, 0.26-0.37). Taken together these results suggest that SCL targets the membrane and DNA of MRSA to facilitate its anti-MRSA antimicrobial effect.

키워드

참고문헌

  1. Stewart CM, Cole MB, Legan JD, Slade L, Vandeven MH, Schaffner DW. 2002. Staphylococcus aureus growth boundaries: moving mechanistic predictive mode is based on solute-specific effects. Appl. Environ. Microbiol. 68: 1864-1871. https://doi.org/10.1128/AEM.68.4.1864-1871.2002
  2. Tommasi R, Brown DG, Walkup GK, Manchester JI, Miller AA. 2015. ESKAPEing the labyrinth of antibacterial discovery. Nat. Rev. Drug. Disc. 14: 529-542. https://doi.org/10.1038/nrd4572
  3. Friedman M. 2015. Antibiotic-resistant bacteria: prevalence in food and inactivation by food compatible compounds and plant extracts. J. Agric. Food. Chem. 63: 3805-3822. https://doi.org/10.1021/acs.jafc.5b00778
  4. Osmanova N, Schultz W, Ayoub N. 2010. Azaphilones a class of fungal metabolites with diverse biological activities. Phytochem. Rev. 9: 315-342. https://doi.org/10.1007/s11101-010-9171-3
  5. Dong J, Zhou Y, Li R, Zhou W, Li L, Zhu Y, et al. 2006. New nematicidal azaphilones from the aquatic fungus Pseudohalonectria adversaria YMF1.01019. FEMS. Microbiol. Lett. 264: 65-69. https://doi.org/10.1111/j.1574-6968.2006.00430.x
  6. Yoshida E, Fujimoto H, Yamazaki M. 1996. Isolation of three new azaphilones, leteusins C, D, and E, from an ascomycete, Talaromyces luteus. Chem. Phar. Bull. 44: 284-287. https://doi.org/10.1248/cpb.44.284
  7. Yang DJ, Tomoda H, Tabata N, Masuma R, Omura S. 1996. New isochromophilones VII and VIII produced by Penicillium sp. FO-4164. J. Antibiot. 49: 223-229. https://doi.org/10.7164/antibiotics.49.223
  8. Yu BZ, Zhang GH, Du ZZ, Zheng YT, Xu JC, Luo XD. 2008 Phomoeuphorbins A-D, azaphilones from the fungus Phomopsis euphorbiae. Phytochemistry 69: 2523-2526. https://doi.org/10.1016/j.phytochem.2008.07.013
  9. Dos Santos P, Ferraz C, Ribeiro PP, Miranda FM, da Silva F, de Souza JT, et al. 2019. Antioxidant and antibacterial activities of the chlorine pigment sclerotiorin from Penicillium mallochii and its chemotaxonomic significance. Biochem. Syst. Ecol. 86: 103915. https://doi.org/10.1016/j.bse.2019.103915
  10. Musso L, Dallavalle S, Merlini L, Bava A, Nasini G, Penco S, et al. 2010. Natural and semisynthetic azaphilones as a new scaffold for Hsp90 inhibitors. Bioorg. Med. Chem. 18: 6031-6043. https://doi.org/10.1016/j.bmc.2010.06.068
  11. Nam JY, Kim HK, Kwon JY, Han MY, Son KH, Lee UC, et al. 2000. 8-O-Methylsclerotiorinamine, antagonist of the Grb2-SH2 domain, isolated from Penicillium multicolor. J. Nat. Prod. 63: 1303-1305. https://doi.org/10.1021/np0001169
  12. Pairet L, Wrigley SK, Chetland I, Reynolds EE, Hayes MA, Holloway J, et al. 1995. Azaphilones with endothelin receptor binding activity produced by Penicillium sclerotiorum: taxonomy, fermentation, isolation, structure elucidation and biological activity. J. Antibiot. 48: 913-923. https://doi.org/10.7164/antibiotics.48.913
  13. Chidananda C, Jagan Mohan Rao L, Sattur AP. 2006. Sclerotiorin, from Penicillium frequantans, a potent inhibitor of aldose reductase. Biotechnol. Lett. 28: 1633-1636. https://doi.org/10.1007/s10529-006-9133-4
  14. Tomoda H, Matsushima C, Tabata N, Namatame I, Tanaka H, Bamberger MJ, et al. 1999. Structure-specific inhibition of cholesteryl ester transfer protein by azaphilones. J. Antibiot. 52: 160-170. https://doi.org/10.7164/antibiotics.52.160
  15. Giridharan P, Verekar SA, Khanna A, Mishra PD, Deshmukh SK. 2012. Anticancer activity of sclerotiorin, isolated from endophytic fungus cephalotheca faveolata Yaguchi, Nishim, & Udagawa. Ind. J. Exp. Biol. 50: 464-468.
  16. Arunpanichlert J, Rukachaisirikul V, Sukpondma Y, Phongpaichit S, Tewtrakul S, Rungjindamai S, et al. 2010. Azaphilone and isocoumarin derivatives from the endophytic fungus Penicillium Sclerotiorum PSU A-13. Chem. Pharm. Bull. 58: 1033-1036. https://doi.org/10.1248/cpb.58.1033
  17. Lin L, Mulholland N, Huang SW, Beattie D, Irwin D, Gu YC, et al. 2012. Design, synthesis, and fungicidal activity of novel sclerotiorin derivatives. Chem. Biol. Drug. Des. 80: 682-692. https://doi.org/10.1111/cbdd.12005
  18. Chen D, Ma SS, He L, Yuan P, She Z, Lu Y. 2017. Sclerotiorin inhibits protein Kinase G from Mycobacterium tuberculosis and impairs mycobacterial growth in macrophages. Tuberculosis 103: 37-43. https://doi.org/10.1016/j.tube.2017.01.001
  19. Gomes DC, Takahashi AP. 2016. Sequential fungal fermentation biotransformation process to produce a red pigment from Sclerotiorin. Food Chem. 210: 355-361. https://doi.org/10.1016/j.foodchem.2016.04.057
  20. Clinical and Laboratory Standards Institute. 2016. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standards. CLSI document M45, 3rd Ed. Clinical and Laboratory and Standards Institute, Wayne, PA.
  21. Pag U, Oedenkoven M, Papo N, Oren Z, Shai Y, Sahl HG. 2004. In vitro activity and mode of action of diasteriometic antimicrobial peptides against bacterial clinical isolates. J. Antimicrob. Chemother. 53: 230-239. https://doi.org/10.1093/jac/dkh083
  22. Uppu DSSM, Manjunath GB, Yarlagadda V, Kaviyil JE, Ravikumar R, Paramanandham K, et al. 2015. Membrane active macromolecules resensitize NDM-1 gram negative clinical isolates to tetracycline antibiotics. PLoS One 10: e0119422. https://doi.org/10.1371/journal.pone.0119422
  23. Carson CF, Mee BJ, Rile TV. 2002. Mechanism of action of Melaleuca alternifolia (Tea tree oil) on Staphylococcus aureus determined by time kill assay, lysis, leakage, and salt tolerance assays, and electron microscopy. Antimicrob. Agents. Chemother. 46: 1914-1920. https://doi.org/10.1128/AAC.46.6.1914-1920.2002
  24. Tyagi P, Singh M, Kumari H, Kumari A, Mukhopadhyay K. 2015. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One 10: e0121313. https://doi.org/10.1371/journal.pone.0121313
  25. Nair DR, Monteiro JM, Memmi G, Thanassi J, Pucci M, Schwartzman J, et al. 2015. Characterization of a novel small molecule that potentiates β-lactam activity against Gram-positive and Gramnegative pathogens. Antimicrob. Agents. Chemother. 59: 1876-1885. https://doi.org/10.1128/AAC.04164-14
  26. Zhou SL, Wang M, Zhao HG, Huang YH, Lin YY, Tan GH, et al. 2016. Penicilazophilone C, a new antineoplastic and antibacterial azaphilone from the marine fungus Penicillium Sclerotiorum. Arch. Pharm Res. 39: 1621-1627. https://doi.org/10.1007/s12272-016-0828-3
  27. Lucas EMF, Monteiro de Castro MC, Takahashi JA. 2007. Antimicrobial properties of Sclerotiorin, isochromophilone VI, and pencolide, metabolites, from a brazilian cerrado isolate of Penicillium sclerotiorum Van Beyma. Braz. J. Microbiol. 38: 785-789. https://doi.org/10.1590/S1517-83822007000400036
  28. Gao SS, Li XM, Zhang Y, Li CS, Cui CM, Wang BG. 2011. Comazaphilones A-F, azaphilone derivatives from the marine sediment-derived fungus Penicillium commune QSD 17. J. Nat. Prod. 74: 256-261. https://doi.org/10.1021/np100788h
  29. King JD, Kocincova D, Westman EL, Lam JS. 2009. Review: lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun. 15: 261-312. https://doi.org/10.1177/1753425909106436
  30. Bell PJL, Karuso P. 2003. Epicocconone, a novel fluorescent compound from the fungus Epicoccum nigrum. J. Am. Chem. Soc. 25: 9304-9305. https://doi.org/10.1021/ja035496+
  31. Choi HY, Veal DA, Karuso P. 2006. Epicocconone, a new cell-permeable long stoke's shift fluorescent stain for live cell imaging and multiplexing. J. Fluoresc. 16: 475-482. https://doi.org/10.1007/s10895-005-0010-7
  32. Mitchell P. 1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. Camb. Philos. Soc. 41: 445-502. https://doi.org/10.1111/j.1469-185X.1966.tb01501.x
  33. Cheng MJ, Wu MD, Yanai H, Su YS, Chen IS, Yuan GF, et al. 2012. Secondary metabolites from the endophytic fungus Biscogniauxia formosana and their antimycobacterial activity. Phytochem. Lett. 5: 467-472. https://doi.org/10.1016/j.phytol.2012.04.007
  34. Farha MA, Verschoor CP, Bowdish D, Brown ED. 2013. Collapsing the proton motive force to identify synergistic combinations against Staphylococcus aureus. Cell. Chem. Biol. 20: 1168-1178.
  35. del Castillo FJ, Del Castillo I, Moreno F. 2001. Construction and characterization of mutations at codon 751 of the Escherichia coli gyrB gene that confer resistance to the antimicrobial peptide microcin B17 and alter the activity of DNA gyrase. J. Bacteriol. 183: 2137-2140. https://doi.org/10.1128/JB.183.6.2137-2140.2001