참고문헌
- Stewart CM, Cole MB, Legan JD, Slade L, Vandeven MH, Schaffner DW. 2002. Staphylococcus aureus growth boundaries: moving mechanistic predictive mode is based on solute-specific effects. Appl. Environ. Microbiol. 68: 1864-1871. https://doi.org/10.1128/AEM.68.4.1864-1871.2002
- Tommasi R, Brown DG, Walkup GK, Manchester JI, Miller AA. 2015. ESKAPEing the labyrinth of antibacterial discovery. Nat. Rev. Drug. Disc. 14: 529-542. https://doi.org/10.1038/nrd4572
- Friedman M. 2015. Antibiotic-resistant bacteria: prevalence in food and inactivation by food compatible compounds and plant extracts. J. Agric. Food. Chem. 63: 3805-3822. https://doi.org/10.1021/acs.jafc.5b00778
- Osmanova N, Schultz W, Ayoub N. 2010. Azaphilones a class of fungal metabolites with diverse biological activities. Phytochem. Rev. 9: 315-342. https://doi.org/10.1007/s11101-010-9171-3
- Dong J, Zhou Y, Li R, Zhou W, Li L, Zhu Y, et al. 2006. New nematicidal azaphilones from the aquatic fungus Pseudohalonectria adversaria YMF1.01019. FEMS. Microbiol. Lett. 264: 65-69. https://doi.org/10.1111/j.1574-6968.2006.00430.x
- Yoshida E, Fujimoto H, Yamazaki M. 1996. Isolation of three new azaphilones, leteusins C, D, and E, from an ascomycete, Talaromyces luteus. Chem. Phar. Bull. 44: 284-287. https://doi.org/10.1248/cpb.44.284
- Yang DJ, Tomoda H, Tabata N, Masuma R, Omura S. 1996. New isochromophilones VII and VIII produced by Penicillium sp. FO-4164. J. Antibiot. 49: 223-229. https://doi.org/10.7164/antibiotics.49.223
- Yu BZ, Zhang GH, Du ZZ, Zheng YT, Xu JC, Luo XD. 2008 Phomoeuphorbins A-D, azaphilones from the fungus Phomopsis euphorbiae. Phytochemistry 69: 2523-2526. https://doi.org/10.1016/j.phytochem.2008.07.013
- Dos Santos P, Ferraz C, Ribeiro PP, Miranda FM, da Silva F, de Souza JT, et al. 2019. Antioxidant and antibacterial activities of the chlorine pigment sclerotiorin from Penicillium mallochii and its chemotaxonomic significance. Biochem. Syst. Ecol. 86: 103915. https://doi.org/10.1016/j.bse.2019.103915
- Musso L, Dallavalle S, Merlini L, Bava A, Nasini G, Penco S, et al. 2010. Natural and semisynthetic azaphilones as a new scaffold for Hsp90 inhibitors. Bioorg. Med. Chem. 18: 6031-6043. https://doi.org/10.1016/j.bmc.2010.06.068
- Nam JY, Kim HK, Kwon JY, Han MY, Son KH, Lee UC, et al. 2000. 8-O-Methylsclerotiorinamine, antagonist of the Grb2-SH2 domain, isolated from Penicillium multicolor. J. Nat. Prod. 63: 1303-1305. https://doi.org/10.1021/np0001169
- Pairet L, Wrigley SK, Chetland I, Reynolds EE, Hayes MA, Holloway J, et al. 1995. Azaphilones with endothelin receptor binding activity produced by Penicillium sclerotiorum: taxonomy, fermentation, isolation, structure elucidation and biological activity. J. Antibiot. 48: 913-923. https://doi.org/10.7164/antibiotics.48.913
- Chidananda C, Jagan Mohan Rao L, Sattur AP. 2006. Sclerotiorin, from Penicillium frequantans, a potent inhibitor of aldose reductase. Biotechnol. Lett. 28: 1633-1636. https://doi.org/10.1007/s10529-006-9133-4
- Tomoda H, Matsushima C, Tabata N, Namatame I, Tanaka H, Bamberger MJ, et al. 1999. Structure-specific inhibition of cholesteryl ester transfer protein by azaphilones. J. Antibiot. 52: 160-170. https://doi.org/10.7164/antibiotics.52.160
- Giridharan P, Verekar SA, Khanna A, Mishra PD, Deshmukh SK. 2012. Anticancer activity of sclerotiorin, isolated from endophytic fungus cephalotheca faveolata Yaguchi, Nishim, & Udagawa. Ind. J. Exp. Biol. 50: 464-468.
- Arunpanichlert J, Rukachaisirikul V, Sukpondma Y, Phongpaichit S, Tewtrakul S, Rungjindamai S, et al. 2010. Azaphilone and isocoumarin derivatives from the endophytic fungus Penicillium Sclerotiorum PSU A-13. Chem. Pharm. Bull. 58: 1033-1036. https://doi.org/10.1248/cpb.58.1033
- Lin L, Mulholland N, Huang SW, Beattie D, Irwin D, Gu YC, et al. 2012. Design, synthesis, and fungicidal activity of novel sclerotiorin derivatives. Chem. Biol. Drug. Des. 80: 682-692. https://doi.org/10.1111/cbdd.12005
- Chen D, Ma SS, He L, Yuan P, She Z, Lu Y. 2017. Sclerotiorin inhibits protein Kinase G from Mycobacterium tuberculosis and impairs mycobacterial growth in macrophages. Tuberculosis 103: 37-43. https://doi.org/10.1016/j.tube.2017.01.001
- Gomes DC, Takahashi AP. 2016. Sequential fungal fermentation biotransformation process to produce a red pigment from Sclerotiorin. Food Chem. 210: 355-361. https://doi.org/10.1016/j.foodchem.2016.04.057
- Clinical and Laboratory Standards Institute. 2016. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standards. CLSI document M45, 3rd Ed. Clinical and Laboratory and Standards Institute, Wayne, PA.
- Pag U, Oedenkoven M, Papo N, Oren Z, Shai Y, Sahl HG. 2004. In vitro activity and mode of action of diasteriometic antimicrobial peptides against bacterial clinical isolates. J. Antimicrob. Chemother. 53: 230-239. https://doi.org/10.1093/jac/dkh083
- Uppu DSSM, Manjunath GB, Yarlagadda V, Kaviyil JE, Ravikumar R, Paramanandham K, et al. 2015. Membrane active macromolecules resensitize NDM-1 gram negative clinical isolates to tetracycline antibiotics. PLoS One 10: e0119422. https://doi.org/10.1371/journal.pone.0119422
- Carson CF, Mee BJ, Rile TV. 2002. Mechanism of action of Melaleuca alternifolia (Tea tree oil) on Staphylococcus aureus determined by time kill assay, lysis, leakage, and salt tolerance assays, and electron microscopy. Antimicrob. Agents. Chemother. 46: 1914-1920. https://doi.org/10.1128/AAC.46.6.1914-1920.2002
- Tyagi P, Singh M, Kumari H, Kumari A, Mukhopadhyay K. 2015. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One 10: e0121313. https://doi.org/10.1371/journal.pone.0121313
- Nair DR, Monteiro JM, Memmi G, Thanassi J, Pucci M, Schwartzman J, et al. 2015. Characterization of a novel small molecule that potentiates β-lactam activity against Gram-positive and Gramnegative pathogens. Antimicrob. Agents. Chemother. 59: 1876-1885. https://doi.org/10.1128/AAC.04164-14
- Zhou SL, Wang M, Zhao HG, Huang YH, Lin YY, Tan GH, et al. 2016. Penicilazophilone C, a new antineoplastic and antibacterial azaphilone from the marine fungus Penicillium Sclerotiorum. Arch. Pharm Res. 39: 1621-1627. https://doi.org/10.1007/s12272-016-0828-3
- Lucas EMF, Monteiro de Castro MC, Takahashi JA. 2007. Antimicrobial properties of Sclerotiorin, isochromophilone VI, and pencolide, metabolites, from a brazilian cerrado isolate of Penicillium sclerotiorum Van Beyma. Braz. J. Microbiol. 38: 785-789. https://doi.org/10.1590/S1517-83822007000400036
- Gao SS, Li XM, Zhang Y, Li CS, Cui CM, Wang BG. 2011. Comazaphilones A-F, azaphilone derivatives from the marine sediment-derived fungus Penicillium commune QSD 17. J. Nat. Prod. 74: 256-261. https://doi.org/10.1021/np100788h
- King JD, Kocincova D, Westman EL, Lam JS. 2009. Review: lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun. 15: 261-312. https://doi.org/10.1177/1753425909106436
- Bell PJL, Karuso P. 2003. Epicocconone, a novel fluorescent compound from the fungus Epicoccum nigrum. J. Am. Chem. Soc. 25: 9304-9305. https://doi.org/10.1021/ja035496+
- Choi HY, Veal DA, Karuso P. 2006. Epicocconone, a new cell-permeable long stoke's shift fluorescent stain for live cell imaging and multiplexing. J. Fluoresc. 16: 475-482. https://doi.org/10.1007/s10895-005-0010-7
- Mitchell P. 1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. Camb. Philos. Soc. 41: 445-502. https://doi.org/10.1111/j.1469-185X.1966.tb01501.x
- Cheng MJ, Wu MD, Yanai H, Su YS, Chen IS, Yuan GF, et al. 2012. Secondary metabolites from the endophytic fungus Biscogniauxia formosana and their antimycobacterial activity. Phytochem. Lett. 5: 467-472. https://doi.org/10.1016/j.phytol.2012.04.007
- Farha MA, Verschoor CP, Bowdish D, Brown ED. 2013. Collapsing the proton motive force to identify synergistic combinations against Staphylococcus aureus. Cell. Chem. Biol. 20: 1168-1178.
- del Castillo FJ, Del Castillo I, Moreno F. 2001. Construction and characterization of mutations at codon 751 of the Escherichia coli gyrB gene that confer resistance to the antimicrobial peptide microcin B17 and alter the activity of DNA gyrase. J. Bacteriol. 183: 2137-2140. https://doi.org/10.1128/JB.183.6.2137-2140.2001