References
- Borodina I, Nielsen J. 2014. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol. J. 9: 609-620. https://doi.org/10.1002/biot.201300445
- Padkina MV, Sambuk EV. 2018. Prospects for the application of yeast display in biotechnology and cell biology (Review). Appl. Biochem. Microbiol. 54: 337-351. https://doi.org/10.1134/S0003683818040105
- Mans R, Daran JMG, Pronk JT. 2018. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr. Opin. Biotechnol. 50: 47-56. https://doi.org/10.1016/j.copbio.2017.10.011
- Portnoy VA, Bezdan D, Zengler K. 2011. Adaptive laboratory evolution - harnessing the power of biology for metabolic engineering. Curr. Opin. Biotechnol. 22: 590-594. https://doi.org/10.1016/j.copbio.2011.03.007
- Fulda S, Gorman AM, Hori O, Samali A. 2010. Cellular stress responses: cell survival and cell death. Int. J. Cell Biol. 2010: 214074. https://doi.org/10.1155/2010/214074
- Ryu HY, Ahn SH, Hochstrasser M. 2020. SUMO and cellular adaptive mechanisms. Exp. Mol. Med. 52: 931-939. https://doi.org/10.1038/s12276-020-0457-2
- Dragosits M, Mattanovich D. 2013. Adaptive laboratory evolution - principles and applications for biotechnology. Microb. Cell Fact. 12: 64. https://doi.org/10.1186/1475-2859-12-64
- Lang GI, Botstein D, Desai MM. 2011. Genetic variation and the fate of beneficial mutations in asexual populations. Genetics 188: 647-661. https://doi.org/10.1534/genetics.111.128942
- Gonzalez A, Bell G. 2013. Evolutionary rescue and adaptation to abrupt environmental change depends upon the history of stress. Philos Trans. R Soc. Lond B Biol. Sci. 368: 20120079. https://doi.org/10.1098/rstb.2012.0079
- Sonderegger M, Sauer U. 2003. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol. 69: 1990-1998. https://doi.org/10.1128/AEM.69.4.1990-1998.2003
- Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT. 2005. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 5: 925-934. https://doi.org/10.1016/j.femsyr.2005.04.004
- Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJA. 2009. Novel Evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl. Environ. Microbiol. 75: 907-914. https://doi.org/10.1128/AEM.02268-08
- Daran-Lapujade P, Daran JM, van Maris AJA, de Winde JH, Pronk JT. 2009. Chemostat-based micro-array analysis in baker's yeast. Adv. Microb. Physiol. 54: 257-311. https://doi.org/10.1016/S0065-2911(08)00004-0
- Novick A, Szilard L. 1950. Description of the chemostat. Science 112: 715-716. https://doi.org/10.1126/science.112.2920.715
- Selmecki AM, Maruvka YE, Richmond PA, Guillet M, Shoresh N, Sorenson AL, et al. 2015. Polyploidy can drive rapid adaptation in yeast. Nature 519: 349-352. https://doi.org/10.1038/nature14187
- Yona AH, Manor YS, Herbst RH, Romano GH, Mitchell A, Kupiec M, et al. 2012. Chromosomal duplication is a transient evolutionary solution to stress. Proc. Natl. Acad. Sci. USA 109: 21010-21015. https://doi.org/10.1073/pnas.1211150109
- Serero A, Jubin C, Loeillet S, Legoix-Ne P, Nicolas AG. 2014. Mutational landscape of yeast mutator strains. Proc. Natl. Acad. Sci. USA 111: 1897-1902. https://doi.org/10.1073/pnas.1314423111
- Solis-Escalante D, van den Broek M, Kuijpers NGA, Pronk JT, Boles E, Daran JM, et al. 2015. The genome sequence of the popular hexose-transport-deficient Saccharomyces cerevisiae strain EBY.VW4000 reveals LoxP/Cre-induced translocations and gene loss. FEMS Yeast Res. 15: fou004.
- Shen Y, Stracquadanio G, Wang Y, Yang K, Mitchell LA, Xue YX, et al. 2016. SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes. Genome Res. 26: 36-49. https://doi.org/10.1101/gr.193433.115
- Finney-Manchester SP, Maheshri N. 2013. Harnessing mutagenic homologous recombination for targeted mutagenesis in vivo by TaGTEAM. Nucleic Acids Res. 41: e99. https://doi.org/10.1093/nar/gkt150
- Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, et al. 2016. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353: aaf8729. https://doi.org/10.1126/science.aaf8729
- Attfield PV. 1997. Stress tolerance: The key to effective strains of industrial baker's yeast. Nat. Biotechnol. 15: 1351-1357. https://doi.org/10.1038/nbt1297-1351
- Randez-Gil F, Sanz P, Prieto JA. 1999. Engineering baker's yeast: room for improvement. Trends Biotechnol. 17: 237-244. https://doi.org/10.1016/S0167-7799(99)01318-9
- Schulze U, Liden G, Nielsen J, Villadsen J. 1996. Physiological effects of nitrogen starvation in an anaerobic batch culture of Saccharomyces cerevisiae. Microbiology 142: 2299-2310. https://doi.org/10.1099/13500872-142-8-2299
- Sillje HHW, Paalman JWG, ter Schure EG, Olsthoorn SQB, Verkleij AJ, Boonstra J, et al. 1999. Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae. J. Bacteriol. 181: 396-400. https://doi.org/10.1128/jb.181.2.396-400.1999
- Mager WH, Ferreira PM. 1993. Stress response of yeast. Biochem. J. 290: 1-13. https://doi.org/10.1042/bj2900001
- Singer MA, Lindquist S. 1998. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol. 16: 460-468. https://doi.org/10.1016/S0167-7799(98)01251-7
- Mensonides FI, Schuurmans JM, Teixeira de Mattos MJ, Hellingwerf KJ, Brul S. 2002. The metabolic response of Saccharomyces cerevisiae to continuous heat stress. Mol. Biol. Rep. 29: 103-106. https://doi.org/10.1023/A:1020392805411
- Parada G, Acevedo F. 1983. On the relation of temperature and RNA content to the specific growth rate in Saccharomyces cerevisiae. Biotechnol. Bioeng. 25: 2785-2788. https://doi.org/10.1002/bit.260251120
- Teunissen A, Dumortier F, Gorwa MF, Bauer M, Tanghe A, Loiez A, et al. 2002. Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker's yeast strain and its use in frozen doughs. Appl. Environ. Microbiol. 68: 4780-4787. https://doi.org/10.1128/AEM.68.10.4780-4787.2002
- Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. 2006. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314: 1565-1568. https://doi.org/10.1126/science.1131969
- Cipponi A, Thomas DM. 2014. Stress-induced cellular adaptive strategies: ancient evolutionarily conserved programs as new anticancer therapeutic targets. Bioessays 36: 552-560. https://doi.org/10.1002/bies.201300170
- Rosenberg SM, Thulin C, Harris RS. 1998. Transient and heritable mutators in adaptive evolution in the lab and in nature. Genetics 148: 1559-1566. https://doi.org/10.1093/genetics/148.4.1559
- Oud B, van Maris AJA, Daran JM, Pronk JT. 2012. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res. 12: 183-196. https://doi.org/10.1111/j.1567-1364.2011.00776.x
- Fabrizio P, Garvis S, Palladino F. 2019. Histone methylation and memory of environmental stress. Cells. 8: 339. https://doi.org/10.3390/cells8040339
- Westergard L, True HL. 2014. Wild yeast harbour a variety of distinct amyloid structures with strong prion-inducing capabilities. Mol. Microbiol. 92: 183-193. https://doi.org/10.1111/mmi.12543
- Datta A, Jinks-Robertson S. 1995. Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science 268: 1616-1619. https://doi.org/10.1126/science.7777859
- Shor E, Fox CA, Broach JR. 2013. The yeast environmental stress response regulates mutagenesis induced by proteotoxic stress. PLoS Genet. 9: e1003680. https://doi.org/10.1371/journal.pgen.1003680
- Sheltzer JM, Blank HM, Pfau SJ, Tange Y, George BM, Humpton TJ, et al. 2011. Aneuploidy drives genomic instability in yeast. Science 333: 1026-1030. https://doi.org/10.1126/science.1206412
- Heidenreich E, Novotny R, Kneidinger B, Holzmann V, Wintersberger U. 2003. Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. EMBO J. 22: 2274-2283. https://doi.org/10.1093/emboj/cdg203
- Hickey CM, Wilson NR, Hochstrasser M. 2012. Function and regulation of SUMO proteases. Nat. Rev. Mol. Cell Biol. 13: 755-766. https://doi.org/10.1038/nrm3478
- Ryu HY, Su D, Wilson-Eisele NR, Zhao DJ, Lopez-Giraldez F, Hochstrasser M. 2019. The Ulp2 SUMO protease promotes transcription elongation through regulation of histone sumoylation. EMBO J. 38: e102003.
- Stephens AD, Snider CE, Bloom K. 2015. The SUMO deconjugating peptidase Smt4 contributes to the mechanism required for transition from sister chromatid arm cohesion to sister chromatid pericentromere separation. Cell Cycle 14: 2206-2218. https://doi.org/10.1080/15384101.2015.1046656
- Ryu HY, Wilson NR, Mehta S, Hwang SS, Hochstrasser M. 2016. Loss of the SUMO protease Ulp2 triggers a specific multichromosome aneuploidy. Genes Dev. 30: 1881-1894. https://doi.org/10.1101/gad.282194.116
- Ryu HY, Lopez-Giraldez F, Knight J, Hwang SS, Renner C, Kreft SG, et al. 2018. Distinct adaptive mechanisms drive recovery from aneuploidy caused by loss of the Ulp2 SUMO protease. Nat. Commun. 9: 5417. https://doi.org/10.1038/s41467-018-07836-0
- Ryu HY, Hochstrasser M. 2017. Adaptive aneuploidy counters a dysregulated SUMO system. Cell Cycle. 16: 383-385. https://doi.org/10.1080/15384101.2016.1256154
- Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ, et al. 2007. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317: 916-924. https://doi.org/10.1126/science.1142210
- Cakar ZP, Seker UOS, Tamerler C, Sonderegger M, Sauer U. 2005. Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res. 5: 569-578. https://doi.org/10.1016/j.femsyr.2004.10.010
- van Maris AJA, Geertman JMA, Vermeulen A, Groothuizen MK, Winkler AA, Piper MDW, et al. 2004. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C-2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl. Environ. Microbiol. 70: 159-166. https://doi.org/10.1128/AEM.70.1.159-166.2004
- Draper JS, Moore HD, Ruban LN, Gokhale PJ, Andrews PW. 2004. Culture and characterization of human embryonic stem cells. Stem Cells Dev. 13: 325-336. https://doi.org/10.1089/1547328041797525
- Mitalipova MM, Rao RR, Hoyer DM, Johnson JA, Meisner LF, Jones KL, et al. 2005. Preserving the genetic integrity of human embryonic stem cells. Nat. Biotechnol. 23: 19-20. https://doi.org/10.1038/nbt0105-19
- Inzunza J, Sahlen S, Holmberg K, Stromberg AM, Teerijoki H, Blennow E, et al. 2004. Comparative genomic hybridization and karyotyping of human embryonic stem cells reveals the occurrence of an isodicentric X chromosome after long-term cultivation. Mol. Hum. Reprod. 10: 461-466. https://doi.org/10.1093/molehr/gah051
- Maitra A, Arking DE, Shivapurkar N, Ikeda M, Stastny V, Kassauei K, et al. 2005. Genomic alterations in cultured human embryonic stem cells. Nat. Genet. 37: 1099-1103. https://doi.org/10.1038/ng1631
- Olariu V, Harrison NJ, Coca D, Gokhale PJ, Baker D, Billings S, et al. 2010. Modeling the evolution of culture-adapted human embryonic stem cells. Stem Cell Res. 4: 50-56. https://doi.org/10.1016/j.scr.2009.09.001