DOI QR코드

DOI QR Code

Alteration of Lung and Gut Microbiota in IL-13-Transgenic Mice Simulating Chronic Asthma

  • Sohn, Kyoung-Hee (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine) ;
  • Baek, Min-gyung (Department of Public Health Sciences, Graduate School, Korea University) ;
  • Choi, Sung-Mi (Department of Public Health Sciences, Graduate School, Korea University) ;
  • Bae, Boram (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine) ;
  • Kim, Ruth Yuldam (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine) ;
  • Kim, Young-Chan (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine) ;
  • Kim, Hye-Young (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine) ;
  • Yi, Hana (Department of Public Health Sciences, Graduate School, Korea University) ;
  • Kang, Hye-Ryun (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine)
  • Received : 2020.09.14
  • Accepted : 2020.10.06
  • Published : 2020.12.28

Abstract

Increasing evidence suggests a potential role of microbial colonization in the inception of chronic airway diseases. However, it is not clear whether the lung and gut microbiome dysbiosis is coincidental or a result of mutual interaction. In this study, we investigated the airway microbiome in interleukin 13 (IL-13)-rich lung environment and related alterations of the gut microbiome. IL-13-overexpressing transgenic (TG) mice presented enhanced eosinophilic inflammatory responses and mucus production, together with airway hyperresponsiveness and subepithelial fibrosis. While bronchoalveolar lavage fluid and cecum samples obtained from 10-week-old IL-13 TG mice and their C57BL/6 wild-type (WT) littermates showed no significant differences in alpha diversity of lung and gut microbiome, they presented altered beta diversity in both lung and gut microbiota in the IL-13 TG mice compared to the WT mice. Lung-specific IL-13 overexpression also altered the composition of the gut as well as the lung microbiome. In particular, IL-13 TG mice showed an increased proportion of Proteobacteria and Cyanobacteria and a decreased amount of Bacteroidetes in the lungs, and depletion of Firmicutes and Proteobacteria in the gut. The patterns of polymicrobial interaction within the lung microbiota were different between WT and IL-13 TG mice. For instance, in IL-13 TG mice, lung Mesorhizobium significantly affected the alpha diversity of both lung and gut microbiomes. In summary, chronic asthma-like pathologic changes can alter the lung microbiota and affect the gut microbiome. These findings suggest that the lung-gut microbial axis might actually work in asthma.

Keywords

References

  1. Wenzel SE. 2012. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat. Med. 18: 716-25. https://doi.org/10.1038/nm.2678
  2. Wynn TA. 2003. IL-13 effector functions. Annu. Rev. Immunol. 21: 425-456. https://doi.org/10.1146/annurev.immunol.21.120601.141142
  3. Ingram JL, Kraft M. 2012. IL-13 in asthma and allergic disease: asthma phenotypes and targeted therapies. J. Allergy Clin. Immunol. 130: 829-842. https://doi.org/10.1016/j.jaci.2012.06.034
  4. Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, et al. 1999. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J. Clin. Invest. 103: 779-788. https://doi.org/10.1172/JCI5909
  5. Liu AH. 2015. Revisiting the hygiene hypothesis for allergy and asthma. J. Allergy Clin. Immunol. 136: 860-865. https://doi.org/10.1016/j.jaci.2015.08.012
  6. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20: 159-166. https://doi.org/10.1038/nm.3444
  7. Wypych TP, Marsland BJ. 2018. Antibiotics as instigators of microbial dysbiosis: implications for asthma and allergy. Trends Immunol. 39: 697-711. https://doi.org/10.1016/j.it.2018.02.008
  8. Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N, et al. 2015. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 17: 704-715. https://doi.org/10.1016/j.chom.2015.03.008
  9. Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, et al. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336: 489-493. https://doi.org/10.1126/science.1219328
  10. Herbst T, Sichelstiel A, Schar C, Yadava K, Burki K, Cahenzli J, et al. 2011. Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am. J. Respir. Crit. Care Med. 184: 198-205. https://doi.org/10.1164/rccm.201010-1574OC
  11. Russell SL, Gold MJ, Hartmann M, Willing BP, Thorson L, Wlodarska M, et al. 2012. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 13: 440-447. https://doi.org/10.1038/embor.2012.32
  12. Karimi K, Inman MD, Bienenstock J, Forsythe P. 2009. Lactobacillus reuteri-induced regulatory T cells protect against an allergic airway response in mice. Am. J. Respir. Crit. Care Med. 179: 186-193. https://doi.org/10.1164/rccm.200806-951OC
  13. MacSharry J, O'Mahony C, Shalaby KH, Sheil B, Karmouty-Quintana H, Shanahan F, et al. 2012. Immunomodulatory effects of feeding with Bifidobacterium longum on allergen-induced lung inflammation in the mouse. Pulm. Pharmacol. Ther. 25: 325-334. https://doi.org/10.1016/j.pupt.2012.05.011
  14. Harb H, Van Tol E, Heine H, Braaksma M, Gross G, Overkamp K, et al. 2013. Neonatal supplementation of processed supernatant from Lactobacillus rhamnosus GG improves allergic airway inflammation in mice later in life. Clin. Exp. Allergy 43: 353-364. https://doi.org/10.1111/cea.12047
  15. Zhang B, An J, Shimada T, Liu S, Maeyama K. 2012. Oral administration of Enterococcus faecalis FK-23 suppresses Th17 cell development and attenuates allergic airway responses in mice. Int. J. Mol. Med. 30: 248-254. https://doi.org/10.3892/ijmm.2012.1010
  16. Marsland BJ, Trompette A, Gollwitzer ES. 2015. The gut-lung axis in respiratory disease. Ann. Am. Thorac. Soc. 12: S150-S156.
  17. Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, et al. 2017. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol. 15: 55-63. https://doi.org/10.1038/nrmicro.2016.142
  18. MacSharry J, O'Mahony C, Shalaby KH, Sheil B, Karmouty-Quintana H, Shanahan F, et al. 2012. Immunomodulatory effects of feeding with Bifidobacterium longum on allergen-induced lung inflammation in the mouse. Pulm. Pharmacol. Ther. 25: 325-334. https://doi.org/10.1016/j.pupt.2012.05.011
  19. Ai C, Zhang Q, Ren C, Wang G, Liu X, Tian F, et al. 2014. Genetically engineered Lactococcus lactis protect against house dust mite allergy in a BALB/c mouse model. PLoS One 9: e109461. https://doi.org/10.1371/journal.pone.0109461
  20. Zheng T, Zhu Z, Wang Z, Homer RJ, Ma B, Riese RJ, Jr., et al. 2000. Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J. Clin. Invest. 106: 1081-1093. https://doi.org/10.1172/JCI10458
  21. Zhu Z, Ma B, Zheng T, Homer RJ, Lee CG, Charo IF, et al. 2002. IL-13-induced chemokine responses in the lung: role of CCR2 in the pathogenesis of IL-13-induced inflammation and remodeling. J. Immunol. 168: 2953-2962. https://doi.org/10.4049/jimmunol.168.6.2953
  22. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12: 1-18.
  23. Wills-Karp M. 2004. Interleukin-13 in asthma pathogenesis. Immunol. Rev. 202: 175-190. https://doi.org/10.1111/j.0105-2896.2004.00215.x
  24. Takayama G, Arima K, Kanaji T, Toda S, Tanaka H, Shoji S, et al. 2006. Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J. Allergy Clin. Immunol. 118: 98-104. https://doi.org/10.1016/j.jaci.2006.02.046
  25. Huang YJ. 2013. Asthma microbiome studies and the potential for new therapeutic strategies. Curr. Allergy Asthma. Rep. 13: 453-461. https://doi.org/10.1007/s11882-013-0355-y
  26. Sverrild A, Kiilerich P, Brejnrod A, Pedersen R, Porsbjerg C, Bergqvist A, et al. 2017. Eosinophilic airway inflammation in asthmatic patients is associated with an altered airway microbiome. J. Allergy Clin. Immunol. 140: 407-417. https://doi.org/10.1016/j.jaci.2016.10.046
  27. Yang HJ, LoSavio PS, Engen PA, Naqib A, Mehta A, Kota R, et al. 2018. Association of nasal microbiome and asthma control in patients with chronic rhinosinusitis. Clin. Exp. Allergy 48: 1744-1747. https://doi.org/10.1111/cea.13255
  28. Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B, Korasidis N, et al. 2018. Microbiome interactions shape host fitness. Proc. Natl. Acad. Sci. USA 115: E11951-E11960. https://doi.org/10.1073/pnas.1809349115
  29. Russell SL, Gold MJ, Willing BP, Thorson L, McNagny KM, Finlay BB. 2013. Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma. Gut Microbes 4: 158-164. https://doi.org/10.4161/gmic.23567
  30. Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. 2001. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J. Allergy Clin. Immunol. 107: 129-134. https://doi.org/10.1067/mai.2001.111237
  31. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, et al. 2016. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 22: 1187-1191. https://doi.org/10.1038/nm.4176
  32. Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, et al. 2011. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. USA 108: 5354-5359. https://doi.org/10.1073/pnas.1019378108
  33. Den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54: 2325-2340. https://doi.org/10.1194/jlr.R036012
  34. Li L, Fang Z, Liu X, Hu W, Lu W, Lee Y-k, et al. 2020. Lactobacillus reuteri attenuated allergic inflammation induced by HDM in the mouse and modulated gut microbes. PLoS One 15: e0231865. https://doi.org/10.1371/journal.pone.0231865
  35. Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halkjaer LB, Bonnelykke K, et al. 2007. Childhood asthma after bacterial colonization of the airway in neonates. N. Engl. J. Med. 357: 1487-1495. https://doi.org/10.1056/NEJMoa052632
  36. Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, et al. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336: 489-493. https://doi.org/10.1126/science.1219328
  37. Barfod KK, Roggenbuck M, Hansen LH, Schjorring S, Larsen ST, Sorensen SJ, et al. 2013. The murine lung microbiome in relation to the intestinal and vaginal bacterial communities. BMC Microbiol. 13: 303. https://doi.org/10.1186/1471-2180-13-303
  38. Cooke KR, Hill GR, Gerbitz A, Kobzik L, Martin TR, Crawford JM, et al. 2000. Hyporesponsiveness of donor cells to lipopolysaccharide stimulation reduces the severity of experimental idiopathic pneumonia syndrome: potential role for a gut-lung axis of inflammation. J. Immunol. 165: 6612-6619. https://doi.org/10.4049/jimmunol.165.11.6612
  39. Sze MA, Tsuruta M, Yang S-WJ, Oh Y, Man SP, Hogg JC, et al. 2014. Changes in the bacterial microbiota in gut, blood, and lungs following acute LPS instillation into mice lungs. PLoS One 9: e111228. https://doi.org/10.1371/journal.pone.0111228
  40. McAleer JP, Kolls JK. 2018. Contributions of the intestinal microbiome in lung immunity. Eur. J. Immunol. 48: 39-49. https://doi.org/10.1002/eji.201646721
  41. Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L, Mason LJ, et al. 2015. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6: 7320. https://doi.org/10.1038/ncomms8320
  42. Bradley CP, Teng F, Felix KM, Sano T, Naskar D, Block KE, et al. 2017. Segmented filamentous bacteria provoke lung autoimmunity by inducing gut-lung axis Th17 cells expressing dual TCRs. Cell Host Microbe. 22: 697-704. e694. https://doi.org/10.1016/j.chom.2017.10.007
  43. Yazar A, Atis S, Konca K, Pata C, Akbay E, Calikoglu M, et al. 2001. Respiratory symptoms and pulmonary functional changes in patients with irritable bowel syndrome. Am. J. Gastroenterol. 96: 1511-1516. https://doi.org/10.1016/S0002-9270(01)02311-5
  44. Kuenzig ME, Bishay K, Leigh R, Kaplan GG, Benchimol EI, Crowdscreen SR review Team. 2018. Co-occurrence of asthma and the inflammatory bowel diseases: a systematic review and meta-analysis. Clin. Transl. Gastroenterol. 9: 188. https://doi.org/10.1038/s41424-018-0054-z
  45. Vieira WA, Pretorius E. 2010. The impact of asthma on the gastrointestinal tract (GIT). J. Asthma Allergy 3: 123-130. https://doi.org/10.2147/JAA.S10592
  46. Marta L, Ana A, Solange O. 2014. Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus? Microbiol. Res. 20: 2-17.