References
- Wenzel SE. 2012. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat. Med. 18: 716-25. https://doi.org/10.1038/nm.2678
- Wynn TA. 2003. IL-13 effector functions. Annu. Rev. Immunol. 21: 425-456. https://doi.org/10.1146/annurev.immunol.21.120601.141142
- Ingram JL, Kraft M. 2012. IL-13 in asthma and allergic disease: asthma phenotypes and targeted therapies. J. Allergy Clin. Immunol. 130: 829-842. https://doi.org/10.1016/j.jaci.2012.06.034
- Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, et al. 1999. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J. Clin. Invest. 103: 779-788. https://doi.org/10.1172/JCI5909
- Liu AH. 2015. Revisiting the hygiene hypothesis for allergy and asthma. J. Allergy Clin. Immunol. 136: 860-865. https://doi.org/10.1016/j.jaci.2015.08.012
- Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20: 159-166. https://doi.org/10.1038/nm.3444
- Wypych TP, Marsland BJ. 2018. Antibiotics as instigators of microbial dysbiosis: implications for asthma and allergy. Trends Immunol. 39: 697-711. https://doi.org/10.1016/j.it.2018.02.008
- Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N, et al. 2015. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 17: 704-715. https://doi.org/10.1016/j.chom.2015.03.008
- Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, et al. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336: 489-493. https://doi.org/10.1126/science.1219328
- Herbst T, Sichelstiel A, Schar C, Yadava K, Burki K, Cahenzli J, et al. 2011. Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am. J. Respir. Crit. Care Med. 184: 198-205. https://doi.org/10.1164/rccm.201010-1574OC
- Russell SL, Gold MJ, Hartmann M, Willing BP, Thorson L, Wlodarska M, et al. 2012. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 13: 440-447. https://doi.org/10.1038/embor.2012.32
- Karimi K, Inman MD, Bienenstock J, Forsythe P. 2009. Lactobacillus reuteri-induced regulatory T cells protect against an allergic airway response in mice. Am. J. Respir. Crit. Care Med. 179: 186-193. https://doi.org/10.1164/rccm.200806-951OC
- MacSharry J, O'Mahony C, Shalaby KH, Sheil B, Karmouty-Quintana H, Shanahan F, et al. 2012. Immunomodulatory effects of feeding with Bifidobacterium longum on allergen-induced lung inflammation in the mouse. Pulm. Pharmacol. Ther. 25: 325-334. https://doi.org/10.1016/j.pupt.2012.05.011
- Harb H, Van Tol E, Heine H, Braaksma M, Gross G, Overkamp K, et al. 2013. Neonatal supplementation of processed supernatant from Lactobacillus rhamnosus GG improves allergic airway inflammation in mice later in life. Clin. Exp. Allergy 43: 353-364. https://doi.org/10.1111/cea.12047
- Zhang B, An J, Shimada T, Liu S, Maeyama K. 2012. Oral administration of Enterococcus faecalis FK-23 suppresses Th17 cell development and attenuates allergic airway responses in mice. Int. J. Mol. Med. 30: 248-254. https://doi.org/10.3892/ijmm.2012.1010
- Marsland BJ, Trompette A, Gollwitzer ES. 2015. The gut-lung axis in respiratory disease. Ann. Am. Thorac. Soc. 12: S150-S156.
- Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, et al. 2017. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol. 15: 55-63. https://doi.org/10.1038/nrmicro.2016.142
- MacSharry J, O'Mahony C, Shalaby KH, Sheil B, Karmouty-Quintana H, Shanahan F, et al. 2012. Immunomodulatory effects of feeding with Bifidobacterium longum on allergen-induced lung inflammation in the mouse. Pulm. Pharmacol. Ther. 25: 325-334. https://doi.org/10.1016/j.pupt.2012.05.011
- Ai C, Zhang Q, Ren C, Wang G, Liu X, Tian F, et al. 2014. Genetically engineered Lactococcus lactis protect against house dust mite allergy in a BALB/c mouse model. PLoS One 9: e109461. https://doi.org/10.1371/journal.pone.0109461
- Zheng T, Zhu Z, Wang Z, Homer RJ, Ma B, Riese RJ, Jr., et al. 2000. Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J. Clin. Invest. 106: 1081-1093. https://doi.org/10.1172/JCI10458
- Zhu Z, Ma B, Zheng T, Homer RJ, Lee CG, Charo IF, et al. 2002. IL-13-induced chemokine responses in the lung: role of CCR2 in the pathogenesis of IL-13-induced inflammation and remodeling. J. Immunol. 168: 2953-2962. https://doi.org/10.4049/jimmunol.168.6.2953
- Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12: 1-18.
- Wills-Karp M. 2004. Interleukin-13 in asthma pathogenesis. Immunol. Rev. 202: 175-190. https://doi.org/10.1111/j.0105-2896.2004.00215.x
- Takayama G, Arima K, Kanaji T, Toda S, Tanaka H, Shoji S, et al. 2006. Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J. Allergy Clin. Immunol. 118: 98-104. https://doi.org/10.1016/j.jaci.2006.02.046
- Huang YJ. 2013. Asthma microbiome studies and the potential for new therapeutic strategies. Curr. Allergy Asthma. Rep. 13: 453-461. https://doi.org/10.1007/s11882-013-0355-y
- Sverrild A, Kiilerich P, Brejnrod A, Pedersen R, Porsbjerg C, Bergqvist A, et al. 2017. Eosinophilic airway inflammation in asthmatic patients is associated with an altered airway microbiome. J. Allergy Clin. Immunol. 140: 407-417. https://doi.org/10.1016/j.jaci.2016.10.046
- Yang HJ, LoSavio PS, Engen PA, Naqib A, Mehta A, Kota R, et al. 2018. Association of nasal microbiome and asthma control in patients with chronic rhinosinusitis. Clin. Exp. Allergy 48: 1744-1747. https://doi.org/10.1111/cea.13255
- Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B, Korasidis N, et al. 2018. Microbiome interactions shape host fitness. Proc. Natl. Acad. Sci. USA 115: E11951-E11960. https://doi.org/10.1073/pnas.1809349115
- Russell SL, Gold MJ, Willing BP, Thorson L, McNagny KM, Finlay BB. 2013. Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma. Gut Microbes 4: 158-164. https://doi.org/10.4161/gmic.23567
- Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. 2001. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J. Allergy Clin. Immunol. 107: 129-134. https://doi.org/10.1067/mai.2001.111237
- Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, et al. 2016. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 22: 1187-1191. https://doi.org/10.1038/nm.4176
- Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, et al. 2011. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. USA 108: 5354-5359. https://doi.org/10.1073/pnas.1019378108
- Den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54: 2325-2340. https://doi.org/10.1194/jlr.R036012
- Li L, Fang Z, Liu X, Hu W, Lu W, Lee Y-k, et al. 2020. Lactobacillus reuteri attenuated allergic inflammation induced by HDM in the mouse and modulated gut microbes. PLoS One 15: e0231865. https://doi.org/10.1371/journal.pone.0231865
- Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halkjaer LB, Bonnelykke K, et al. 2007. Childhood asthma after bacterial colonization of the airway in neonates. N. Engl. J. Med. 357: 1487-1495. https://doi.org/10.1056/NEJMoa052632
- Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, et al. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336: 489-493. https://doi.org/10.1126/science.1219328
- Barfod KK, Roggenbuck M, Hansen LH, Schjorring S, Larsen ST, Sorensen SJ, et al. 2013. The murine lung microbiome in relation to the intestinal and vaginal bacterial communities. BMC Microbiol. 13: 303. https://doi.org/10.1186/1471-2180-13-303
- Cooke KR, Hill GR, Gerbitz A, Kobzik L, Martin TR, Crawford JM, et al. 2000. Hyporesponsiveness of donor cells to lipopolysaccharide stimulation reduces the severity of experimental idiopathic pneumonia syndrome: potential role for a gut-lung axis of inflammation. J. Immunol. 165: 6612-6619. https://doi.org/10.4049/jimmunol.165.11.6612
- Sze MA, Tsuruta M, Yang S-WJ, Oh Y, Man SP, Hogg JC, et al. 2014. Changes in the bacterial microbiota in gut, blood, and lungs following acute LPS instillation into mice lungs. PLoS One 9: e111228. https://doi.org/10.1371/journal.pone.0111228
- McAleer JP, Kolls JK. 2018. Contributions of the intestinal microbiome in lung immunity. Eur. J. Immunol. 48: 39-49. https://doi.org/10.1002/eji.201646721
- Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L, Mason LJ, et al. 2015. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6: 7320. https://doi.org/10.1038/ncomms8320
- Bradley CP, Teng F, Felix KM, Sano T, Naskar D, Block KE, et al. 2017. Segmented filamentous bacteria provoke lung autoimmunity by inducing gut-lung axis Th17 cells expressing dual TCRs. Cell Host Microbe. 22: 697-704. e694. https://doi.org/10.1016/j.chom.2017.10.007
- Yazar A, Atis S, Konca K, Pata C, Akbay E, Calikoglu M, et al. 2001. Respiratory symptoms and pulmonary functional changes in patients with irritable bowel syndrome. Am. J. Gastroenterol. 96: 1511-1516. https://doi.org/10.1016/S0002-9270(01)02311-5
- Kuenzig ME, Bishay K, Leigh R, Kaplan GG, Benchimol EI, Crowdscreen SR review Team. 2018. Co-occurrence of asthma and the inflammatory bowel diseases: a systematic review and meta-analysis. Clin. Transl. Gastroenterol. 9: 188. https://doi.org/10.1038/s41424-018-0054-z
- Vieira WA, Pretorius E. 2010. The impact of asthma on the gastrointestinal tract (GIT). J. Asthma Allergy 3: 123-130. https://doi.org/10.2147/JAA.S10592
- Marta L, Ana A, Solange O. 2014. Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus? Microbiol. Res. 20: 2-17.