DOI QR코드

DOI QR Code

Biochemical property identification of 10 strains of Bacillus thuringiensis and 10 strains of Bacillus cereus (7 strains of non-emetic and 3 strains of emetic type) by API test

  • 투고 : 2020.10.28
  • 심사 : 2020.11.19
  • 발행 : 2020.12.31

초록

The objective of this study was to identify the fermentation characteristics of Bacillus thuringiensis and emetic, non-emetic Bacillus cereus using analytical profile index (API) test. Ten strains of B. thuringiensis and 10 strains of B. cereus including 3 strains of emetic type were used at the same concentrations. The differences of fermentation characteristics between the B. thuringiensis and B. cereus was not obvious, but the differences between the non-emetic and emetic B. cereus were distinctive. Seven among 50 substrates were negative for all non-emetic B. cereus strains and positive for all emetic strains, and three substrates among additional 12 substrates had the same tendency. From these differences, 3 emetic B. cereus strains were not indicated as B. cereus by API test. These results indicate that API test is not a suitable method to identify some strains of emetic B. cereus, and the distinctive differences in substrate utilization can be used to improve selective media.

키워드

참고문헌

  1. Ahn KJ, Lee TG. Production of microbial insecticide using Bacillus thuringiensis BT17 for the control of Lepidopteran larvae. Kor. J. Microbiol. 46: 389-396 (2010)
  2. Aruwa CE, Olatope SOA. Characterization of Bacillus species from convenience foods with conventional and API kit method: A comparative analysis. J. Appl. Life Sci. Int. 3: 42-48 (2015) https://doi.org/10.9734/JALSI/2015/17406
  3. Bean NH, Griffin PM. Foodborne disease outbreaks in the United States, 1973-1987: Pathogens, Vehicles, and Trends. J. Food Protect. 53: 804-817 (1990) https://doi.org/10.4315/0362-028x-53.9.804
  4. Callahan C, Fox K, Fox A. The small acid soluble proteins (SASP α and SASP β) of Bacillus weihenstephanensis and Bacillus mycoides group 2 are the most distinct among the Bacillus cereus group. Mol. Cell. Probe. 23: 291-297 (2009) https://doi.org/10.1016/j.mcp.2009.07.003
  5. Carpana E, Marocchi L, Gelmini L. Evalution of the API 50CHB system for the identification and biochemical characterization of Bacillus larvae. Apidologie 26: 11-16 (1995) https://doi.org/10.1051/apido:19950102
  6. Chang YH, Shangkuan YH, Lin HC, Liu HW. PCR assay of the groEL gene for detection and differentiation of Bacillus cereus Group cells. Appl. Environ. Microb. 69: 4502-4510 (2003) https://doi.org/10.1128/AEM.69.8.4502-4510.2003
  7. Chen J, Hua G, Jurat-Fuentes JL, Abdullah MA, Adang MJ. Synergism of Bacillus thuringiensis toxins by a fragment of a toxinbinding cadherin. P. Natl. Acad. Sci. USA. 104: 13901-13906 (2007) https://doi.org/10.1073/pnas.0706011104
  8. Ehling-Schulz M, Fricker M, Scherer S. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 48: 479-487 (2004) https://doi.org/10.1002/mnfr.200400055
  9. From C, Pukall R, Schumann P, Granum PE. Toxin-producing ability among Bacillus spp. Outside the Bacillus cereus group. Appl. Environ. Microb. 71: 1178-1183 (2005) https://doi.org/10.1128/AEM.71.3.1178-1183.2005
  10. Goto K, Omura T, Hara Y, Sadaie Y. Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. J. Gen. Appl. Microbiol. 46: 1-8 (2000) https://doi.org/10.2323/jgam.46.1
  11. Granum PE, Lund T. Bacillus cereus and its food poisoning toxins. Fems. Microbiol. Lett. 157: 223-228 (1997) https://doi.org/10.1111/j.1574-6968.1997.tb12776.x
  12. Hendriksen NB, Hansen BM. Diagnostic properties of three conventional selective plating media for selection of Bacillus cereus, B. thuringiensis and B. weihenstephanensis. Folia. Microbiol. 56: 535-539 (2011) https://doi.org/10.1007/s12223-011-0079-0
  13. Iurlina MO, Saiz AI, Fuselli SR, Fritz R. Prevalence of Bacillus spp. in different food products collected in Argentina. Lwt-Food. Sci. Technol. 39: 105-110 (2006) https://doi.org/10.1016/j.lwt.2005.01.006
  14. Jeon JH, Park JH. Toxin Gene analysis of Bacillus cereus and Bacillus thuringiensis isolated from cooked rice. Korean J. Food sci. Technol. 42: 361-367 (2010)
  15. Kang SH, Kim KJ, Kim WY, Chung SI. Usefulness of bacteriological tests and sspE PCR for identification of Bacillus cereus group. J. Bacteriol. Virol. 38: 61-75 (2008) https://doi.org/10.4167/jbv.2008.38.2.61
  16. Kim SH, Kim MG., Kang MC, Son YW, Lee CH, Kim IB, Lee YJ, Choi SY. Isolation and growth pattern of Bacillus cereus from ready-to-eat foods. J. Life. Sci. 14: 664-669 (2004a) https://doi.org/10.5352/JLS.2004.14.4.664
  17. Kim HJ, Nam KJ, Lee DS, Paik HD. Distributions of microorganisms and identification of pathogenic Bacteria Isolated in raw beef of jangzorim. Korean J. Food Sci. Technol. 36: 683-687 (2004b)
  18. Kim SK, Kim KP, Jang SS, Shin EM, Kim MJ, Oh SS, Ryu SY. Prevalence and toxigenic profiles of Bacillus cereus isolated from dried red peppers, rice, and sunsik in Korea. J. Food. Protect. 72: 578-582 (2009) https://doi.org/10.4315/0362-028X-72.3.578
  19. Kobayashi H, Kubota J, Fujihara K, Honjoh K, Iio M, Fujiki N, Nakabe M, Oda SI, Satoyama T, Takasu K, Nakanishi H, Miyamoto T. Simultaneous Enrichment of Salmonella spp , Escherichia coli O157:H7, Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus cereus, and Listeria monocytogenes by single broth and screening of the Pathogens by Multiplex Real-time PCR. Food sci. Technol. Res. 15: 427-438 (2009) https://doi.org/10.3136/fstr.15.427
  20. Korea Ministry of Government Legislation. Korean Food Sanitation Act, 2020. Available from: http://www.law.go.kr/%EB%B2%95%EB%A0%B9/%EC%8B%9D%ED%92%88%EC%9C%84%EC%83%9D%EB%B2%95. Accessed Aug. 20, 2020.
  21. Laohachai KN, Bahadi R, Hardo MB, Hardo PG, Kourie JI. The role of bacterial and non-bacterial toxins in the induction of changes in membrane transport: Implications for diarrhea. Toxicon 42: 687-707 (2003) https://doi.org/10.1016/j.toxicon.2003.08.010
  22. Lee WC, Sakai T, Lee MJ, Hamakawa M, Lee SM, Lee IM. An epidemiological study of food poisoning in Korea and Japan. Int. J. Food Microbiol. 29: 141-148 (1996) https://doi.org/10.1016/0168-1605(95)00075-5
  23. Logan NA, Berkeley RCW. Identification of Bacillus strains using the API system. J. Gen. Microbiol. 130: 1871-1882 (1984)
  24. Popoff MR, Poulain B. Bacterial toxins and the nervous system: Neurotoxins and multipotential toxins interacting with neuronal cells. Toxins 2: 683-737 (2010) https://doi.org/10.3390/toxins2040683
  25. Ryu CB, Lee MS. Food poisoning. J. Korean. Med. Assoc. 54: 617-626 (2011) https://doi.org/10.5124/jkma.2011.54.6.617
  26. Slamti L, Lereclus D. A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. Embo J. 21: 4550-4559 (2002) https://doi.org/10.1093/emboj/cdf450
  27. Webb MD, Barker GC, Goodburn KE, Peck MW. Risk presented to minimally processed chilled foods by psychrotrophic Bacillus cereus. Trends. Food Sci. Tech. 93: 94-105 (2019) https://doi.org/10.1016/j.tifs.2019.08.024
  28. Wu WJ, Rho YH, Ahn BY. Enterotoxin productivity and antimicrobial susceptibility of Bacillus cereus BY06 isolated from pigs with diarrheal disease. Kor. J. Food & Nutr. 27: 213-218 (2014) https://doi.org/10.9799/ksfan.2014.27.2.213