DOI QR코드

DOI QR Code

Performance of a Molten Carbonate Fuel Cell With Direct Internal Reforming of Methanol

메탄올 내부개질형 용융탄산염 연료전지의 성능

  • Ha, Myeong Ju (Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology) ;
  • Yoon, Sung Pil (Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology) ;
  • Han, Jonghee (Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology) ;
  • Lim, Tae-Hoon (Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology) ;
  • Kim, Woo Sik (Department of Chemical Engineering, Kyung Hee University) ;
  • Nam, Suk Woo (Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology)
  • 하명주 (한국과학기술연구원 수소.연료전지연구단) ;
  • 윤성필 (한국과학기술연구원 수소.연료전지연구단) ;
  • 한종희 (한국과학기술연구원 수소.연료전지연구단) ;
  • 임태훈 (한국과학기술연구원 수소.연료전지연구단) ;
  • 김우식 (경희대학교 화학공학과) ;
  • 남석우 (한국과학기술연구원 수소.연료전지연구단)
  • Received : 2020.12.01
  • Accepted : 2020.12.16
  • Published : 2020.12.31

Abstract

Methanol synthesized from renewable hydrogen and captured CO2 has recently attracted great interest as a sustainable energy carrier for large-scale renewable energy storage. In this study, molten carbonate fuel cell's performance was investigated with the direct conversion of methanol into syngas inside the anode chamber of the cell. The internal reforming of methanol may significantly improve system efficiency since the heat generated from the electrochemical reaction can be used directly for the endothermic reforming reaction. The porous Ni-10 wt%Cr anode was sufficient for the methanol steam reforming reaction under the fuel cell operating condition. The direct supply of methanol into the anode chamber resulted in somewhat lower cell performance, especially at high current density. Recycling of the product gas into the anode gas inlet significantly improved the cell performance. The analysis based on material balance revealed that, with increasing current density and gas recycling ratio, the methanol steam reforming reaction rate likewise increased. A methanol conversion more significant than 90% was achieved with gas recycling. The results showed the feasibility of electricity and syngas co-production using the molten carbonate fuel cell. Further research is needed to optimize the fuel cell operating conditions for simultaneous production of electricity and syngas, considering both material and energy balances in the fuel cell.

재생에너지로부터 수전해를 통하여 생산된 수소와 포집된 CO2를 활용하여 메탄올을 합성하는 power-to-methanol 기술이 재생에너지를 대용량으로 저장하는 방안으로 제시되고 있다. 본 연구에서는 메탄올을 수소 및 전력 생산에 활용함에 있어 더욱 효율적인 방법으로 연료전지 내부에서 메탄올 수증기개질 반응이 일어나는 내부개질형 용융탄산염 연료전지에 대해 성능 분석을 실시하였다. 용융탄산염 연료전지의 연료극으로 사용되는 다공성 Ni-10 wt%Cr을 촉매로 메탄올 수증기개질 반응을 수행한 결과 연료전지 운전 조건에서 연료극은 메탄올 수증기개질 반응에 충분한 활성을 나타내었다. 메탄올 수용액을 직접 용융탄산염 연료전지의 연료극으로 공급한 결과 연료전지의 성능은 외부 개질기를 통하여 생산된 개질가스를 공급하는 경우에 비해 다소 성능이 낮게 나타났으며, 메탄올 공급유량이 비교적 낮은 경우 고 전류밀도에서 불안정한 성능을 나타내었다. 연료극으로부터 생성된 가스를 재순환시킴으로써 연료전지의 성능을 향상시킬 수 있었으며, 메탄올 전환율도 90% 이상 얻을 수 있었다. 물질수지를 통하여 연료극에서 일어나는 반응을 분석한 결과 전류밀도 및 가스 재순환 유량이 증가함에 따라 메탄올 수증기개질 반응속도가 증가함을 확인하였다. 이상의 결과로부터 별도의 촉매층을 설치할 필요 없이 연료극 만으로도 용융탄산염 연료전지 내에서 메탄올 수증기개질 반응이 가능하며, 메탄올 내부개질형 용융탄산염 연료전지를 통하여 전력과 합성가스를 동시에 생산할 수 있음을 확인하였다.

Keywords

References

  1. Ko, A., Park, S.-H., and Kim, S., "The Economic Feasibility Analysis of 100-MW Power-to-Gas System," Clean Technol., 26(1), 55-64 (2020).
  2. Gotz, M., Lefebvre, J., Mors, F., Koch, A. M., Graf, F., Bajohr, S., Reimert, R., and Kolb, T., "Renewable Power-to-Gas: A Technological and Economic Review," Renew. Energy, 85, 1371-1390 (2016). https://doi.org/10.1016/j.renene.2015.07.066
  3. Yeom, G., Seo, M., and Baek, Y., "A Study on the CO2 Methanation in Power to Gas (P2G) over Ni-Catalysts," Trans. Korean Hydrogen New Energy Soc., 30(1), 14-20 (2019). https://doi.org/10.7316/KHNES.2019.30.1.14
  4. Bos, M. J., Kersten, S. R. A., and Brilman, D. W. F., "Wind Power to Methanol: Renewable Methanol Production using Electricity, Electrolysis of Water and CO2 Air Capture," Appl. Energy, 264, 114672 (2020). https://doi.org/10.1016/j.apenergy.2020.114672
  5. Hank, C., Gelpke, S., Schnabl, A., White, R. J., Full, J., Wiebe, N., Smolinka, T., Schaadt, A., Henning, H.-M., and Hebling, C., "Economics & Carbon Dioxide Avoidance Cost of Methanol Production Based on Renewable Hydrogen and Recycled Carbon Dioxide-Power-to Methanol," Sustain. Energy Fuels, 2(6), 1244-1261 (2018). https://doi.org/10.1039/c8se00032h
  6. Rauchle, K., Plass, L., Wernicke, H.-J., and Bertau, M., "Methanol for Renewable Energy Storage and Utilization," Energy Technol, 4(1), 193-200 (2016). https://doi.org/10.1002/ente.201500322
  7. Kang, B. M., Kang, Y. T., Lee, S. H., Kim, N. S., Yi, K. E., Park, M. J., Jeong, C.-H., and Jeong, D.-W., "Analysis of Hydrogen Sales Volume in Changwon," Trans. Korean Hydrogen New Energy Soc., 30(4), 356-361 (2019). https://doi.org/10.7316/KHNES.2019.30.4.356
  8. Kang, B. M., Kang, Y. T., Kim, M. W., Lee, S. H., Park, M. J., Jeong, C.-H., and Jeong, D.-W., "Current Status of Hydrogen Consumption and Promotion Plan for the Deployment of Fuel Cell Bus in Changwon City," Trans. Korean Hydrogen New Energy Soc., 30(6), 479-484 (2019).
  9. Cheon, U., Ahn, K., and Shin, H., "Study on the Characteristics of Methanol Steam Reformer Using Latent Heat of Steam," Trans. Korean Hydrogen New Energy Soc., 29(1), 19-24 (2018). https://doi.org/10.7316/KHNES.2018.29.1.19
  10. Ji, H., Baik, K., Yang, S., and Jung, S., "Start-up Strategy of Multi-Stage Burner for Methanol Fuel Reforming Plant," Trans. Korean Hydrogen New Energy Soc., 30(3), 201-208 (2019). https://doi.org/10.7316/KHNES.2019.30.3.201
  11. Avgouropoulos, G., Papavasiliou, J., Daletou, M. K., Kallitsis, J. K., Ioannides, T., and Neophytides, S., "Reforming Methanol to Electricity in a High Temperature PEM Fuel Cell," Appl. Catal. B: Environ., 90(3-4), 628-632 (2009). https://doi.org/10.1016/j.apcatb.2009.04.025
  12. Ribeirinha, P., Schuller, G., Boaventura, M., and Mendes, A., "Synergetic Integration of a Methanol Steam Reforming Cell with a High Temperature Polymer Electrolyte Fuel Cell," Int. J. Hydrogen Energy, 42(19), 13902-13912 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.172
  13. Papavasiliou, J., Schutt, C., Kolb, G., Neophytides, S., and Avgouropoulos, G., "Technological Aspects of an Auxiliary Power Unit with Internal Reforming Methanol Fuel Cell," Int. J. Hydrogen Energy, 44(25), 12818-12828 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.136
  14. Oh, I.-H., Yoon, S. P., Lim, T.-H., Nam, S. W., and Hong, S. A., "Studies on the Fabrication Process of the Anode for Molten Carbonate Fuel Cells," HWAHAK KONGHAK, 33(5), 640-640 (1995).
  15. Byun, C. K., Im, H. B., Park, J. H., Baek, J. H., Jeong, J. M., Yoon, W. R., and Yi, K. B., "Enhanced Catalytic Activity of Cu/Zn Catalyst by Ce Addition for Low Temperature Water Gas Shift Reaction," Clean Technol., 21(3) 200-206 (2015). https://doi.org/10.7464/ksct.2015.21.3.200
  16. Park, J. H., Baek, J. H., Hwang, R. H., and Yi, K. B., "Enhanced Catalytic Activity of Cu/ZnO/Al2O3 Catalyst by Mg Addition for Water Gas Shift Reaction," Clean Technol., 23(4) 429-434 (2017).
  17. Park, J., Baek, J. H., Jo, G. H., Rasheed, H. U., and Yi, K. B., "Catalytic Characteristic of Water-Treated Cu/ZnO/MgO/Al2O3 Catalyst for LT-WGS Reaction," Trans. Korean Hydrogen New Energy Soc., 30(2), 95-102 (2019). https://doi.org/10.7316/KHNES.2019.30.2.95
  18. Shim, J.-O., Na, H.-S., Ahn, S.-Y., Jang, W.-J., and Roh, H.-S., "An Optimization of Aging Time for Low-Temperature Water-Gas Shift Over Cu-Zn-Al Catalyst," Trans. Korean Hydrogen New Energy Soc., 30(2), 103-110 (2019). https://doi.org/10.7316/KHNES.2019.30.2.103
  19. Lee, J., "A Study on the Characteristics of Ni/Ce0.9Gd0.1O2-x and Cu/Ce0.9Gd0.1O2-x Catalysts for Methanol Steam Reforming Synthesized by Solution Combustion Process," Trans. Korean Hydrogen New Energy Soc., 30(3), 209-219 (2019). https://doi.org/10.7316/KHNES.2019.30.3.209
  20. Gim, B., Yoon, W. L., and Seo, D. J., "Analysis of the Economy of Scale for Domestic Steam Methane Reforming Hydrogen Refueling Stations Utilizing the Scale Factor," Trans. Korean Hydrogen New Energy Soc., 30(3), 251-259 (2019). https://doi.org/10.7316/KHNES.2019.30.3.251
  21. Kim, D.-H., Park, S.-H., Ku, Y.-J., Kim, P.-J., and Huh, Y.-S., "A Study on Analysis of Operation Data Monitoring Based on Demonstration of Hydrogen Refueling Station," Trans. Korean Hydrogen New Energy Soc., 30(6), 505-512 (2019). https://doi.org/10.7316/KHNES.2019.30.6.505
  22. Chae, C., Kang, S., Kim, H., Chae, S., and Kim, Y., "Evaluation of Influential Factors of Hydrogen Fueling Protocol by Modeling and Simulation," Trans. Korean Hydrogen New Energy Soc., 30(6), 513-522 (2019).
  23. Lim, O.-T., and Pyo, D. Y., "A Study on Explosive Hazardous Areas in Hydrogen Handling Facility," Trans. Korean Hydrogen New Energy Soc., 30(1), 29-34 (2019). https://doi.org/10.7316/KHNES.2019.30.1.29
  24. Hwang, S.-I., Kang, S.-K., and Huh, Y.-S., "A Study on the Safety Improvement by CFD Analysis for Packaged Type Hydrogen Refueling System," Trans. Korean Hydrogen New Energy Soc., 30(3), 243-250 (2019). https://doi.org/10.7316/KHNES.2019.30.3.243
  25. Pyo, D. Y., Kim, Y.-H., and Lim, O.-T., "A Study on Safety Assessment of Hydrogen Station," Trans. Korean Hydrogen New Energy Soc., 30(6), 499-504 (2019).