• Title/Summary/Keyword: Syngas and electricity co-production

Search Result 7, Processing Time 0.025 seconds

Basic Economic Analysis for Co-production Process of DME and Electricity using Syngas Obtained by Coal Gasification (석탄 가스화를 통한 전력 생산과 DME 병산 공정에 대한 기초 경제성 분석)

  • Yoo, Young Don;Kim, Su Hyun;Cho, Wonjun;Mo, Yonggi;Song, Taekyong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.796-806
    • /
    • 2014
  • The key for the commercial deployment of IGCC power plants or chemical (methanol, dimethyl ether, etc.) production plants based on coal gasification is their economic advantage over plants producing electricity or chemicals from crude oil or natural gas. The better economy of coal gasification based plants can be obtained by co-production of electricity and chemicals. In this study, we carried out the economic feasibility analysis on the process of co-producing electricity and DME (dimethyl ether) using coal gasification. The plant's capacity was 250 MW electric and DME production of 300,000 ton per year. Assuming that the sales price of DME is 500,000 won/ton, the production cost of electricity is in the range of 33~58% of 150.69 won/kwh which is the average of SMP (system marginal price) in 2013, Korea. At present, the sales price of DME in China is approximately 900,000 won/ton. Therefore, there are more potential for lowering the price of co-produced electricity when comparing that from IGCC only. Since the co-production system can not only use the coal gasifier and the gas purification process as a common facility but also can control production rates of electricity and DME depending on the market demand, the production cost of electricity and DME can be significantly reduced compared to the process of producing electricity or DME separately.

Coal Gasification Performance with Key Operating Variables (주요 운전 변수에 따른 석탄의 가스화 성능 예측)

  • Lee, Seung-Jong;Chung, Seok-Woo;Yun, Yong-Seung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.437-440
    • /
    • 2007
  • Gasification converts coal and other feedstocks into a very clean and usable gas, called syngas, that can be used to produce a wide variety products such as electricity, chemicals, transports fuels, hydrogen production, etc. This paper was studied the gasification performance effects with the variation of the gasification operating parameters such as the feeding amounts of oxygen, steam and coal. When $O_2/coal$ ratio was below 0.8, $H_2$ mole % was increased as increasing $O_2/coal$ ratio. CO mole % was increased when $O_2/coal$ ratio was below 1.2 as increasing the $O_2/coal$ ratio. As increasing steam/coal ratio, $H_2$ mole %was increased and CO mole % was decreased. The $O_2/coal$ and steam/coal ratio was $0.8{\sim}0.9$ and $0.0{\sim}0.4$, respectively, to keep the proper gasification condition that the gasifier temperature was $1300^{\circ}C{\sim}1450^{\circ}C$ and the cold gas efficiency was over 76%.

  • PDF

Performance of a Molten Carbonate Fuel Cell With Direct Internal Reforming of Methanol (메탄올 내부개질형 용융탄산염 연료전지의 성능)

  • Ha, Myeong Ju;Yoon, Sung Pil;Han, Jonghee;Lim, Tae-Hoon;Kim, Woo Sik;Nam, Suk Woo
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.329-335
    • /
    • 2020
  • Methanol synthesized from renewable hydrogen and captured CO2 has recently attracted great interest as a sustainable energy carrier for large-scale renewable energy storage. In this study, molten carbonate fuel cell's performance was investigated with the direct conversion of methanol into syngas inside the anode chamber of the cell. The internal reforming of methanol may significantly improve system efficiency since the heat generated from the electrochemical reaction can be used directly for the endothermic reforming reaction. The porous Ni-10 wt%Cr anode was sufficient for the methanol steam reforming reaction under the fuel cell operating condition. The direct supply of methanol into the anode chamber resulted in somewhat lower cell performance, especially at high current density. Recycling of the product gas into the anode gas inlet significantly improved the cell performance. The analysis based on material balance revealed that, with increasing current density and gas recycling ratio, the methanol steam reforming reaction rate likewise increased. A methanol conversion more significant than 90% was achieved with gas recycling. The results showed the feasibility of electricity and syngas co-production using the molten carbonate fuel cell. Further research is needed to optimize the fuel cell operating conditions for simultaneous production of electricity and syngas, considering both material and energy balances in the fuel cell.

The developments of heavy hydrocarbon reformer for SOFC

  • Bae, Jung-Myeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF

Coal gasification with High Temperature Steam (고온(高溫) 수증기(水蒸氣)를 이용한 석탄(石炭) 가스화)

  • Yun, Jin-Han;Kim, Woo-Hyun;Keel, Sang-In;Min, Tai-Jin;Roh, Seon-Ah
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.28-33
    • /
    • 2007
  • Coal is the most abundant energy source and deposited in every area of world. Combustion process with lower efficiency has been mainly used. Therefore, implementation of more efficient technologies, involving gasification, combined cycles and fuel cells, would be a key issue in the plans for more efficient power generation. In these technologies, gasification has been studied for decades. However, coal gasification to high value combustible gas such as hydrogen and carbon monoxide is focused again due to high oil price. The gaseous product, called syngas, can be effectively utilized in a variety of ways ranging from electricity production to chemical industry (as feedstock). In this study, coal gasification with ultra high temperature steam has been performed. The effect of steam/carbon ratio on the produced gas concentrations, gasification rate and additional products like tar, ammonia and cyan compounds has been determined.

Performance Analysis of Polygeneration Process (폴리제너레이션 성능 모사 연구)

  • LEE, SIHWANG;DAT, NGUYEN VO;LEE, GUNHEE;JUNG, MINYOUNG;JEON, RAKYOUNG;OH, MIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.352-360
    • /
    • 2017
  • Polygeneration process is widely used to pursuit high efficiency by sharing electricity, utility, refrigeration and the utilization of product chemicals. In this paper, performance analysis of the 450 MW Class polygeneration process was conducted with various syngas generated from coal and biomass gasifier. WGSR and PSA process were employed for hydrogen production and separation. Process modeling and dynamic simulation was carried out, and the results were compared with NETL report. Net power of the polygeneration process was 439 MW considering power consumption. More than 90% of CO was converted at WGSR and the hydrogen purity of PSA was more than 99.99%.

Review on the water-gas shift process for a coal SNG project (석탄 SNG 생산설비의 수성가스전환 공정 분석)

  • Kim, Youngdo;Shin, Yongseung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.75.1-75.1
    • /
    • 2011
  • Coal gasification is considered as one of the most prospective technologies in energy field since it can be utilized for various products such as electricity, SNG (Synthetic Natural Gas or Substitute Natural Gas) and other chemical products. Among those products from coal gasification, SNG is emerging as a very lucrative product due to the rising prices of oil and natural gas, especially in Asian countries. The process of SNG production is very similar to the conventional IGCC in that the overall process is highly dependent on the type of gasifier and coal rank. However, there are some differences between SNG production and IGCC, which is that SNG plant requires higher oxygen purity from oxygen plant and more complex gas cleanup processes including water-gas shift reaction and methanation. Water-gas shift reaction is one of the main process in SNG plant because it is a starting point for the latter gas cleanup processes. For the methanation process, syngas is required to have a composition of $H_2$/CO = 3. This study reviewed various considerations for water-gas shift process in a conceptual design on an early stage like a feasibility study for a real project. The factors that affect the design parameters of water-gas shift reaction include the coal properties, the type of gasifier, the overall thermal efficiency of the plant and so on. Water-gas shift reaction is a relatively proven technology compared to the other processes in SNG plant so that it can reduce technological variability when designing a SNG project.

  • PDF