DOI QR코드

DOI QR Code

Polymer Eyeglass Lens with Ultraviolet & High-Energy Visible Light Blocking Function for Eye Health

자외선 및 고에너지 가시광 차단 기능을 갖는 눈 건강을 위한 폴리머 안경렌즈

  • Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
  • 김기출 (목원대학교 신소재화학공학과)
  • Received : 2020.08.05
  • Accepted : 2020.12.04
  • Published : 2020.12.31

Abstract

Ultraviolet rays, which have wavelengths smaller than 400 nm, are very harmful to the eyes. Recently, high-energy visible light was also revealed to be harmful to retinal cells. Therefore, polymer eyeglass lenses that can block UV and high-energy visible light are needed for eye health. In this study, high-refractive-index polymer eyeglass lens, n=1.67, were manufactured using the injection-mold method with the m-xylene diisocyanate monomer, 2,3-bis((2-mercaptoethyl)thio)-1-propanethiol monomer, benzotriazole UV absorber, release of alkyl phosphoric ester, dye mixture of CI solvent violet 13, and catalyst of dibutyltin dichloride mixture. A multi-layer anti-reflection coating was applied to manufactured polymer eyeglass lenses for both sides using an E-beam evaporation system. The optical properties of the manufactured lenses with the UV and high-energy visible light-blocking function were analyzed by UV-visible spectrophotometry. As a result, the polymer eyeglass lens with a UV absorber of 0.5 wt. % blocked 99% of UV and high-energy visible light shorter than 411 nm. The average transmittance of the polymer eyeglass lens with a UV absorber of 0.5wt.% was 97.9% in the range of 460 ~ 660 nm for photopic eye sensitivity higher than 10%. Therefore, clear image acquisition in photopic vision is possible.

파장 400 nm 이하의 자외선은 눈 건강에 매우 해롭다. 또한 고에너지 가시광도 망막 세포에 영향을 줄 수 있음이 최근에 밝혀졌다. 따라서 자외선 및 고에너지 가시광 차단 기능의 안경렌즈 개발이 시대적으로 요청되고 있다. 본 연구에서는 m-자일릴렌 디이소시아네이트 모노머와 2,3-bis((2-mercaptoethyl)thio)-1-propanethiol 모노머 및 벤트리아졸 UV 흡수제, 알킬인산에스터 이형제, 안료혼합물(CI solvent violet 13), 이염화부틸주석 촉매제 등의 혼합물을 인젝션 몰드 방법으로 열중합 공정을 적용하여, 굴절률 1.67의 고굴절률 폴리머 안경렌즈를 제조하였다. 제조된 폴리머 안경렌즈의 양면에 전자빔 진공증착 시스템으로 다층 반사방지 코팅을 하였다. 제조된 안경렌즈의 자외선 및 고에너지 가시광 차단 기능을 UV-visible spectrophotometer로 분석하였다. 그 결과 UV 흡수제를 0.5wt% 첨가한 폴리머 안경렌즈가 411 nm 파장 이하의 자외선 및 고에너지 가시광을 99 % 이상 차단하였다. 또한 460 ~ 660 nm 파장의 명소시 시각 민감도 10% 이상의 영역에서 평균 투과율이 97.9%를 나타내어 명소시에서 선명한 상을 얻을 수 있었다.

Keywords

References

  1. Q. Fu, "Solar radiation", pp. 1859-1863, Elsevier Science, 2003. http://curry.eas.gatech.edu/Courses/6140/ency/Chapter3/Ency_Atmos/Radiation_Solar.pdf
  2. from Wikipedia https://en.wikipedia.org/wiki/Ultraviolet
  3. K-C. Kim, "Anti-reflection coating technology based high refractive index lens with ultra-violet ray blocking function", Journal of the Korea Academia-Industrial cooperation Society, Vol. 17, No. 12, pp. 482-487, 2016. DOI: https://doi.org/10.5762/KAIS.2016.17.12.482
  4. L. Knels, M. Valtink, C. Roehlecke, A. Lupp, J. Vefa, M. Mehner, R. H. W. Funk, "Blue light stress in retinal neuronal(R28) cells is dependent on wavelength range and irradiance", European Journal of Neuroscience, Vol. 34, pp. 548-558, 2011. DOI: https://doi.org/10.1111/j.1460-9568.2011.07790.x
  5. K. Ratnayake, J. L. Payton, O. H. Lakmal, A. Karunarathne,, "Blue light excited retinal intercepts cellular signaling", Scientific Reports, Vol. 8, p. 10207, 2018. DOI: https://doi.org/10.1038/s41598-018-28254-8
  6. K-C. Kim, "A study on the anti-reflection coating effects of polymer eyeglasses lens", Journal of the Korea Academia-Industrial cooperation Society, Vol. 18, No. 1, pp. 216-221, 2017. DOI: https://doi.org/10.5762/KAIS.2017.18.1.216
  7. K-C. Kim, "Effective graded refractive-index anti-reflection coating for high refractive-index polymer ophthalmic lenses", Materials Letters, Vol. 160, pp. 158-161, 2015. DOI: https://doi.org/10.1016/j.matlet.2015.07.108
  8. K-C. Kim, "Thickness effect of anti-reflection coating with graded refractive index structure", International Journal of Applied Engineering Research, Vol. 10, No. 13, pp. 33671-33673, 2015.
  9. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, "Nanostructured multilayer graded-index antireflection coating for Si solar sells with broadband and omnidirectional characteristics", Applied Physics Letters, Vol. 93, p. 251108, 2008. DOI: https://doi.org/10.1063/1.3050463
  10. J. Moghal, J. Kobler, J. Sauer, J. Best, M. Gardener, A. A. R. Watt, and G. Wakefield, "High-performance, single-layer antireflective optical coatings comprising mesoporous silica nanoparticles", ACS Applied Materials & Interfaces, Vol. 4, pp. 854-859, 2012. DOI: https://doi.org/10.1021/am201494m
  11. Y. Li, J. Zhang, and B. Yang, "Antireflective surfaces based on biomimetic nanopillared arrays', Nano Today, Vol. 5, pp. 117-127, 2010. DOI: https://doi.org/10.1016/j.nantod.2010.03.001
  12. M. Notara, S. Behboudifard, M. A. Kluth, C. Mablo, C. Ganss, M. H. Frank, B. Schumacher, C. Cursiefen, "UV light-blocking contact lenses protect against short-term UVB-induced limbal stem cell niche damage and inflammation", Scientific Reports, Vol. 8, p. 12564, 2018. DOI: https://doi.org/10.1038/s41598-018-30021-8
  13. J. Depry, R. Golding, L. Szczotka-Flynn, H. Dao, F. Baron, K. Cooper, "UVB-protective properties of contact lenses with intended use in photoresponsive eyelid dermatoses", Photodermatology, Photoimmunology & Photomedicine, Vol. 29, pp. 253-260, 2013. DOI: https://doi.org/10.1111/phpp.12064
  14. S. A. Giannos, E. R. Kraft, L. J. Lyons, P. K. Gupta, "Spectral evaluation of eyeglass blocking efficiency of ultraviolet/high-energy visible blue light for ocular protection", Optom Vis Sci, Vol. 96, No. 7, pp. 513-522, 2019. DOI: http://doi.org/10.1097/opx.0000000000001393
  15. C. W. Dunnil, "UV blocking glass: low cost filters for visible light photocatalytic assessment", International Journal of Photoenergy, Vol. 2014, p. 407027, 2014. DOI: https://doi.org/10.1155/2014/407027