DOI QR코드

DOI QR Code

Changes of biological activity and nutritional content by processing methods of Flammulina velutipes, Grifola frondosa, and Sparassis crispa

팽이, 잎새버섯, 꽃송이버섯 가공방법별 생리활성 및 영양성분 변화

  • An, Gi-Hong (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Han, Jae-Gu (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Kim, Ok-Tae (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Cho, Jae-Han (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA)
  • 안기홍 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 한재구 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 김옥태 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 조재한 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과)
  • Received : 2020.08.28
  • Accepted : 2020.09.22
  • Published : 2020.12.31

Abstract

This study was carried out to investigate the changes in the biological activity and nutritional content of Flammulina velutipes, Grifola frondosa, and Sparassis crispa extracts after roasting treatment. Regarding biological activities, the DPPH radical scavenging activity was the highest in the extracts of air-dried G. frondosa, while the nitrite scavenging activity was significantly higher in the extracts of roasted S. crispa (p<0.05). The total polyphenol contents of F. velutipes and S. crispa were significantly increased by the roasting treatment compared with those in fresh samples (p<0.05). Regarding the amino acid composition of edible mushrooms, the content of sweet-taste amino acids, including serine (Ser) and alanine (Ala), increased in G. frondosa after roasting, whereas bitter amino acids, including decreased in roasted versus samples. Moreover, the contents of essential amino acids such as leucine (Leu), isoleucine (Ile), methionine (Met), valine (Val), and histidine (His) in F. velutipes and S. crispa were increased due to the roasting treatment (versus fresh samples). Thus, it was confirmed that the r method is effective in improving the nutritional content of edible mushrooms.

본 연구에서는 버섯의 건조 및 로스팅 처리의 가공방법에 따른 생리활성 성분과 영양성분의 변화에 대하여 알아보기 위해서 실험을 수행하였다. 항산화 등의 생리활성 성분의 변화를 분석한 결과, DPPH 라디컬 소거능은 잎새버섯의 열풍건조 시료에서 가장 높았으며, 팽이와 꽃송이 버섯은 가공방법별 유의적인 차이는 없었다. 아질산염 소거능은 꽃송이버섯의 로스팅 시료에서 증가하는 것으로 나타났으며, 팽이와 잎새버섯은 유의적 차이가 없거나 생시료에 비하여 낮았다. 총 폴리페놀 함량은 팽이와 꽃송이버섯 로스팅 시료가 생버섯(fresh) 시료에 비하여 증가하는 것으로 나타났다. 아미노산 분석결과, 잎새버섯은 로스팅 처리로 인하여 아미노산 성분들 중 단맛을 담당하는 세린(Ser), 알라닌(Ala)성분들이 증가함과 동시에 쓴맛을 나타내는 류신(Leu), 이소류신(Ile) 성분들은 감소하는 것으로 나타났으며, 팽이와 꽃송이버섯은 필수 아미노산 성분을 포함하여 대부분의 아미노산 성분 함량이 로스팅 처리로 인하여 생시료에 비하여 증가하고 있는 것으로 나타나 로스팅 처리가 버섯내의 영양성분 향상에 효과가 있는 것으로 확인되었다.

Keywords

References

  1. An GH, Han JG, Cho JH. 2020. Changes in biological activities and nutritional contents of edible mushrooms following roasting treatment. J Mushrooms 18: 63-71.
  2. Barros L et al. 2007. Effects of fruiting body maturity stage on chemical composition and antimicrobial activity of Lacarius sp. mushrooms. J Agric Food Chem. 55: 4781-4788. https://doi.org/10.1021/jf070407o
  3. Beluhan S, Ranogajec A. 2011. Chemical composition and non-volatile components of Croatian wild edible mushrooms. Food Chem 124: 1076-1082. https://doi.org/10.1016/j.foodchem.2010.07.081
  4. Benzie IF, Strain JJ. 1999. Ferric reducing antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299: 15-27. https://doi.org/10.1016/S0076-6879(99)99005-5
  5. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1191-1200. https://doi.org/10.1038/1811199a0
  6. Chang HY. 2008. SWOT analysis for direction of Korean mushroom industry. J Mushrooms 6: 63-67.
  7. Chang ST, Miles PG. 1989. Edible mushrooms and their cultivation. CRC Press, Inc. USA. 3-28.
  8. Cho JH et al. 2014. Comparative analysis of anti-oxidant effects and polyphenol contents of the fruiting bodies in oyster mushrooms. J Mushrooms 12: 311-315. https://doi.org/10.14480/JM.2014.12.4.311
  9. Choi SJ et al. 2010. Physiological activities of extract from edible mushrooms. J Korean Soc Food Sci Nutr 39: 1087-1096. https://doi.org/10.3746/JKFN.2010.39.8.1087
  10. Do JH et al. 1989. Changes in color intensity and components during browning reaction of white ginseng water extract. Korean J Food Sci Technol 21: 480-485.
  11. Duncan DB. 1955. Multiple range and multiple F-test. Biometrics 11: 1-5. https://doi.org/10.2307/3001478
  12. Folin O, Denis W. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol. Chem. 12: 239-243. https://doi.org/10.1016/S0021-9258(18)88697-5
  13. Gray JI, Dugan Jr LR. 1975. Inhibition of N-nitrosamine formation in model food systems. J Food Sci 40: 981-984. https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  14. Jo WS et al. 2009. 2008 The nation opinion research to mushroom industry. J. Mushrooms 7: 37-43.
  15. Kim GW et al. 2018. Physicochemical characteristics of Sengmaksan added with Liriope platyphylla roasted for different times. Korean J Food Preserv 25: 62-70. https://doi.org/10.11002/KJFP.2018.25.1.62
  16. Kim SB et al. 1990. Nitrite-scavenging effects of roasted-barley extracts according to processing conditions. Korean J. Food Sci. Technol. 22: 748-752.
  17. Kwon HN, Choi CB. 2018. Comparison of free amino acids, anserine, and carnosine contents of beef according to the country of origin and marbling score. J Korean Soc Food Sci Nutr 47: 357-362. https://doi.org/10.3746/jkfn.2018.47.3.357
  18. Lee DS, Kim KH, Yook HS. 2016. Antioxidant activities of different parts of Sparassis crispa depending on extraction temperature. J Korean Soc Food Sci Nutr 45: 1617-1622. https://doi.org/10.3746/jkfn.2016.45.11.1617
  19. Lee YS, Seo GS. 2005. Problems and improvement scheme for mushroom industry. J Mushroom Sci Prod. 3: 159-171.
  20. Manzi P, Aguzzi A, Pizzoferrato L. 2001. Nutritional value of mushrooms widely consumed in Italy. Food Chem 73: 321-325. https://doi.org/10.1016/S0308-8146(00)00304-6
  21. Mau JL, Lin HC, Chen CC. 2001. Non-volatile components of several medicinal mushrooms. Food Res Int 34: 521-526. https://doi.org/10.1016/S0963-9969(01)00067-9
  22. Noh JG et al. 2009. A study of useful wild mushroom by segregation and identification native in middle area. J. Mushrooms 7: 49-52.
  23. Oyaizu M. 1986. Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J. Nutr Diet 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  24. Park MH et al. 1999. Studies on flavor components and organoleptic properties in roasted red ginseng marc. J Ginseng Res 23: 211-216.
  25. Park YA et al. 2017. Comparative analysis of amino acid content of Lentinula edodes, a new variety of shiitake mushsroom, in 'Poongnyunko'. J Mushrooms 15: 31-37. https://doi.org/10.14480/JM.2017.15.1.31
  26. Qi Y et al. 2013. Antioxidant and anticancer effects of edible and medicinal mushrooms. J Korean Soc Food Sci Nutr 42: 655-662. https://doi.org/10.3746/JKFN.2013.42.5.655
  27. Redgwell RJ, Trovato V, Curti D. 2003. Cocoa bean carbohydrates: roasting-induced changes and polymer interactions. Food Chem 80: 511-516. https://doi.org/10.1016/S0308-8146(02)00320-5
  28. Saha AK et al. 2013. Screening of six ayurvedic medicinal plant extracts for antioxidant and cytotoxic activity. J Pharmacogn Phytochem 2: 181-188.
  29. Song CH et al. 2012. Enhancement of antioxidant activity of Codonopsis lanceolata by stepwise steaming process. Korean J. Med Crop Sci. 20: 238-244. https://doi.org/10.7783/KJMCS.2012.20.4.238
  30. Strydom DJ, Cohen SA. 1993. Sensitive analysis of cystine/cysteine using 6-aninoquinoquinoly-N-hydroxysuccinimidy carbamate (AQC) derivatives. Techniques in Protein Chemistry IV, Academic Press: 299-306.
  31. Yang JH, Lin HC, Mau JL. 2001. Non-volatile taste components of several commercial mushrooms. Food Chem 72: 465-471. https://doi.org/10.1016/S0308-8146(00)00262-4