DOI QR코드

DOI QR Code

Genetic diversity and population structure of European button mushroom (Agaricus bisporus) using SSR markers

SSR 마커를 이용한 유럽 양송이 자원의 유전적 다양성 및 집단구조분석

  • Shin, Hye-Ran (Department of Industrial Plant Science and Technology, Chungbuk National University) ;
  • An, Hyejin (Department of Industrial Plant Science and Technology, Chungbuk National University) ;
  • Bang, Jun Hyoung (Department of Industrial Plant Science and Technology, Chungbuk National University) ;
  • Kim, Jun Je (Department of Industrial Plant Science and Technology, Chungbuk National University) ;
  • Han, Seahee (Department of Industrial Plant Science and Technology, Chungbuk National University) ;
  • Lee, Hwa-Yong (Department of Forest Science, Chungbuk National University) ;
  • Chung, Jong-Wook (Department of Industrial Plant Science and Technology, Chungbuk National University)
  • 신혜란 (충북대학교 농업생명환경대학 특용식물학과) ;
  • 안혜진 (충북대학교 농업생명환경대학 특용식물학과) ;
  • 방준형 (충북대학교 농업생명환경대학 특용식물학과) ;
  • 김준제 (충북대학교 농업생명환경대학 특용식물학과) ;
  • 한세희 (충북대학교 농업생명환경대학 특용식물학과) ;
  • 이화용 (충북대학교 농업생명환경대학 산림학과) ;
  • 정종욱 (충북대학교 농업생명환경대학 특용식물학과)
  • Received : 2020.10.28
  • Accepted : 2020.11.23
  • Published : 2020.12.31

Abstract

Agaricus bisporus is an important edible mushroom that is used as a functional food. In this study, European A. bisporus strains were analyzed for genetic diversity, population structure, and genetic differentiation using simple sequence repeat (SSR) markers. European A. bisporus strains were divided into four groups by distance-based analysis and two subpopulations by model-based analysis. The SSR markers used in this study did not group European A. bisporus strains by geographical region or pileus color. Genetic diversity was high in Group 4 based on distance-based analysis and Pop. 2 based on model-based analysis. A. bisporus strains showed very low genetic differentiation. The results of this study can be used for breeding A. bisporus in the future.

본 연구에서는 유럽 양송이 자원들을 SSR marker를 통해 유전적 다양성과 집단 구조, 유전적 분화에 대하여 분석하였다. 본 연구에서 유럽의 양송이 자원들은 유전적 거리기반의 4개의 그룹으로 나뉘었고 집단구조 분석을 통하여 2개의 subpopulation으로 이루어져 있었다. 본 연구에서 사용한 SSR 마커로 유럽의 양송이 자원들은 지리적 그리고 갓색으로 구분되지 않았다. 유전적 다양성은 유전적 거리기반의 그룹에서는 Group 4, 집단구조 분석을 통한 subpopulation에서는 Pop. 2의 다양성이 높았다. 그리고 양송이 자원들은 유전적 분화가 매우 낮았다. 본 연구의 결과는 차후 양송이의 육종 등에 이용 할 수 있을 것이다.

Keywords

References

  1. An H, Jo IH, Oh YL, Jang KY, Kong WS, Sung JK, So YS, Chung JW. 2019. Molecular characterization of 170 new gDNA-SSR markers for genetic diversity in button mushroom (Agaricus bisporus). Mycobiology 47: 527-532. https://doi.org/10.1080/12298093.2019.1667131
  2. Amend A, Garbelotto M, Fang Z, Keeley S. 2010. Isolation by landscape in populations of a prized edible mushroom Tricholoma matsutake. Conserv Genet 11: 795-802. https://doi.org/10.1007/s10592-009-9894-0
  3. Barroso G, Sonnenberg ASM, Van Griensven LJLD, Labarere J. 2000. Molecular cloning of a widely distributed microsatellite core sequence from the cultivated mushroom Agaricus bisporus. Fungal Genet Biol 31: 115-123. https://doi.org/10.1006/fgbi.2000.1239
  4. Callac P. 1995. Breeding of edible fungi with emphasis on the variability among French genetic resources of Agaricus bisporus. Can J Bot 73: S980-S986. https://doi.org/10.1139/b95-348
  5. Callac P, Theochari I, Kerrigan RW. 2002. The germplasm of Agaricus bisporus: Main results after ten years of collecting in France, in Greece, and in North America. In G. Paroussi, D. Voyiatzis, E. Paroussis (ed.), II Balkan Symposium on Vegetables and Potatoes. Greece. 49-55.
  6. Choi SJ, Lee YS, Kim JK, Kim JK, Lim SS. 2010. Physiological activities of extract from edible mushrooms. J Korean Soc Food Sci Nutr 39: 1087-1096. https://doi.org/10.3746/JKFN.2010.39.8.1087
  7. Du QZ, Wang BW, Wei ZZ, Zhang DQ, Li BL. 2012. Genetic diversity and population structure of Chinese white poplar (Populus tomentosa) revealed by SSR markers. J Hered 103: 853-862. https://doi.org/10.1093/jhered/ess061
  8. Elliott TJ. 1985. Genetics and breeding of species of Agaricus. In P. B. Flegg, D. M. Spencer, D. A. Wood (ed.), Biology and Technology of the Cultivated Mushroom, Wiley. England. 111-139.
  9. Fisher R. 1930. The genetical theory of natural selection. Oxford University Press. England. p. 360.
  10. Foulongene-Oriol M, Remi D, Cathy S, Christine D, Aurelien B, Anne R, Savoie JM. 2011. Comparative linkage mapping in the white button mushroom Agaricus bisporus provides foundation for breeding management. Curr Genet 57: 39-50. https://doi.org/10.1007/s00294-010-0325-z
  11. Fu Y, Wang X, Li D, Liu Y, Song B, Zhang C, Wang Q, Chen M, Zhang Z, Li Y. 2016. Identification of resistance to wet bubble disease and genetic diversity in wild and cultivated strains of Agaricus bisporus. Int J Mol Sci 17: 1568. https://doi.org/10.3390/ijms17101568
  12. Gao W, Baar JJP, Maliepaard C, Visser RGF, Zhang J, Sonnenberg ASM. 2016. Multi-trait QTL analysis for agronomic and quality characters of Agaricus bisporus (button mushroom). AMB Express 6: 67. https://doi.org/10.1186/s13568-016-0239-3
  13. Greenbaum G, Templeton AR, Zarmi Y, Bar-David S. 2014. Allelic richness following population founding events - A stochastic modeling framework incorporating gene flow and genetic drift. PLOS ONE 9: e115203. https://doi.org/10.1371/journal.pone.0115203
  14. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  15. Lee HY, An HJ, Oh YL, Jang GY, Kong WS, Ryu HJ, Cheong JW. 2019. Assessment of genetic diversity and population structure of commercial button mushroom (Agaricus bisporus) strains in Korea. J Mushroom 17: 171-178. https://doi.org/10.14480/JM.2019.17.4.171
  16. Lee HY, Moon S, Ro HS, Chung JW, Ryu H. 2020. Analysis of genetic diversity and population structure of wild strains and cultivars using genomic SSR markers in Lentinula edodes. Mycobiology 48: 115-121. https://doi.org/10.1080/12298093.2020.1727401
  17. Li YC, Korol AB, Fahima T, Beiles A, Nevo E. 2002. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11: 2453-2465. https://doi.org/10.1046/j.1365-294X.2002.01643.x
  18. Moore AJ, Challen MP, Warmer PJ, Elliott TJ. 2001. RAPD discrimination of Agaricus bisporus mushroom cultivars. Appl Microbiol Biotechnol 55: 742-749. https://doi.org/10.1007/s002530000588
  19. Peakall R, Smouse PE. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and researchan update. Bioinfornatics 28: 2537-2539. https://doi.org/10.1093/bioinformatics/bts460
  20. Pritchard JK, Stephens M, Donelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959. https://doi.org/10.1093/genetics/155.2.945
  21. Raper CA, Raper JR, Miller RE. 1972. Genetic analysis of the life cycle of Agaricus bisporus. Mycologia 64: 1088-1117. https://doi.org/10.2307/3758075
  22. Savoie JM, Foulongne-Oriol M, Barroso G, Callac P. 2013. Genetics and genomics of cultivated mushrooms, application to breeding of Agarics. In F. Kempken (ed.), Agricultural Applications, Springer-Verlag. Germany. 3-33.
  23. Simon RR, Phillips KM, Horst RL, Munro IC. 2011. Vitamin D mushrooms: Comparison of the composition of button mushrooms (Agaricus bisporus) treated postharvest with UVB light or sunlight. J Agric Food Chem 59: 8724-8732. https://doi.org/10.1021/jf201255b
  24. Sharareh R, Pourianfar HR, Janpoor J. 2016. Collection and identification of Iranian wild mushrooms: towards establishment of a mushroom bio-bank. J Adv Res 4: 256-260.
  25. Sonnenberg ASM, Johan JPB, Patrick MH, Brian L, Wei G, Amrah W, Jurriaan JM. 2011. Breeding and strain protection in the button mushroom Agaricus bisporus. In J. M. Savoie, M. Foulongne-Oriol, M. Largeteau, G. Barroso (ed.), Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products. Arcachon, France. 7-15.
  26. Summerbell RC, Castle AJ, Horgen PA, Anderson JB. 1989. Inheritance of restriction fragment length polymeophisms in Agaricus brunnescens. Genetics 123: 293-300. https://doi.org/10.1093/genetics/123.2.293
  27. Wang ZS, Chen MY, Cai ZX, Liao JH, Li HR, Guo ZJ, Lu ZH. 2011. DNA fingerprinting of genetic diversity of Agaricus bisporus. In J. M. Savoie, M. Foulongne-Oriol, M. Largeteau, G. Barroso (ed.), Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products, France. 1-8.
  28. Wright S. 1921. Systems of mating. I. The biometric relations between parent and offspring. Genetics 6: 111-123. https://doi.org/10.1093/genetics/6.2.111
  29. Xiang X, Li C, Li L, Bian Y, Kwan HS, Nong W, Cheung MK, Xiao Y. 2016. Genetic diversity and population structure of Chinese Lentinula edodes revealed by InDel and SSR markers. Mycol Prog 15: 37. https://doi.org/10.1007/s11557-016-1183-y
  30. Xu J, Kerrigan RW, Callac P, Horgen PA, Anderson JB. 1997. Genetic structure of natural populations of Agaricus bisporus, the commercial button mushroom. J Hered 88: 482-488. https://doi.org/10.1093/oxfordjournals.jhered.a023141
  31. Xu J, Kerrigan RW, Sonnenberg ASM, Callac P, Horgen PA, Anderson JB. 1998. Mitochondrial DNA variation in natural populations of the mushroom Agaricus bisporus. Mol Ecol 7: 19-33. https://doi.org/10.1046/j.1365-294x.1998.00301.x