DOI QR코드

DOI QR Code

ON INTERVAL VALUED INTUITIONISTIC FUZZY HYPERIDEALS OF ORDERED SEMIHYPERGROUPS

  • Lekkoksung, Somsak (Division of Mathematics, Faculty of Engineering Rajamangala University of Technology Isan, Khon Kaen Campus) ;
  • Lekkoksung, Nareupanat (Division of Mathematics, Faculty of Engineering Rajamangala University of Technology Isan, Khon Kaen Campus)
  • Received : 2020.06.07
  • Accepted : 2020.11.10
  • Published : 2020.12.30

Abstract

We introduce the notion of interval valued intuitionistic fuzzy hyperideals, bi-hyperideals and quasi-hyperideals of an ordered semihypergroup. We characterize an interval valued intuitionistic fuzzy hyperideal of an ordered semihypergroup in terms of its level subset. Moreover, we show that interval valued intuitionistic fuzzy bi-hyperideals and quasi-hyperideals coincide only in a particular class of ordered semihypergroups. Finally, we show that every interval valued intuitionistic fuzzy quasi-hyperideal is the intersection of an interval valued intuitionistic fuzzy left hyperideal and an interval valued intuitionistic fuzzy right hyperideal.

Keywords

Acknowledgement

The authors grateful to the referees for their valuable comments and suggestions for improving the article.

References

  1. S. Abdullah and K. Hila, Interval valued intuitionistic fuzzy set in Γ-semihypergroups, Int. J. Mach. Learn. & Cyber. 7 (2016), 217-228. https://doi.org/10.1007/s13042-014-0250-4
  2. K. T. Atanassov and G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets Syst. 31 (1989), 343-349. https://doi.org/10.1016/0165-0114(89)90205-4
  3. M. Azhar, N. Yaqoob, M. Gulistan and M. Khalaf, On (∈, ∈ qk)-fuzzy hyperideals in ordered LA-semihypergroups, Disc. Dyn. Nat. Soc. (2018), Article ID 9494072, 13 pages.
  4. P. Bonansinga and P. Corsini, On semihypergroup and hypergroup homomorphisms, Boll. Un. Mat. Ital. 6 (1982), 717-727.
  5. B. Davvaz and S. Omidi, Basic notions and properties of ordered semihyperrings, Categ. General Alg. Struct. Appl. 4 (2016), 43-62.
  6. M. Gulistan, N. Yaqoob, S. Kadry and M. Azhar, On generalized fuzzy sets in ordered LA-semihypergroups, Proc. Est. Acad. Sci. 68 (2019) 43-54. https://doi.org/10.3176/proc.2019.1.06
  7. D. Heidari and B. Davvaz, On ordered hyperstructures, U.P.B. Sci. Bull. Series A. 73 (2011), 85-96.
  8. N. Kehayopulu and M. Tsingelis, Fuzzy ideal in ordered semigroups, Quasigroups Related Systems. 15 (2007), 279-289.
  9. D. Krishnaswamy, J. Jayaraj and T. Anitha, Interval-valued intuitionistic fuzzy bi-ideals in ternary semirings, Rom. J. Math. Comput. Sci. 6 (2006), 6-15.
  10. F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm. (1934), 45-49.
  11. S. Z. Song, H. Bordbar and Y. B. Jun, A new type of hesitant fuzzy subalgebras and ideals in BCK/BCI-algebras, J. Intell. Fuzzy Syst. 32 (2009), 2009-2016. https://doi.org/10.3233/JIFS-161601
  12. J. Tang, B. Davvaz, X. Y. Xie and N. Yaqoob, On fuzzy interior Γ-hyperideals in ordered Γ-semihypergroups, J. Intell. Fuzzy Syst. 32 (2017), 2447-2460. https://doi.org/10.3233/JIFS-16431
  13. N. Tipachot and B. Pibaljommee, Fuzzy interior hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Math. 36 (2016), 859-870.
  14. T. Vougiouklis, On some representation of hypergroups, Ann. Sci. Univ. Clermont-Ferrand II Math. 26 (1990), 21-29.
  15. X. Wang, L. Dong and J. Yan, Maximum ambiguity based sample selection in fuzzy decision tree induction, IEEE Trans. Knowl. Data Eng. 24 (2012), 1491-1505. https://doi.org/10.1109/TKDE.2011.67
  16. N. Yaqoob and M. Gulistan, Partially ordered left almost semihypergroups, J. Egyptian Math. Soc. 23 (2015) 231-235. https://doi.org/10.1016/j.joems.2014.05.012
  17. N. Yaqoob, M. Gulistan, J. Tang, and M. Azhar, On generalized fuzzy hyperideals in ordered LA-semihypergroups, Comput. Appl. Math. 38 (2019) 124. https://doi.org/10.1007/s40314-019-0876-7
  18. L. A. Zadeh, Fuzzy set, Inform. Control. 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  19. L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-II, Inform. Sci. 8 (1975), 301-357. https://doi.org/10.1016/0020-0255(75)90046-8