DOI QR코드

DOI QR Code

다중회귀분석을 이용한 미계측 유역의 갈수지수 산정에 관한 연구

A study on estimation of lowflow indices in ungauged basin using multiple regression

  • 임가균 (경보기술단 방재과) ;
  • 정세진 (강원대학교 강원종학기술연구원) ;
  • 김병식 (강원대학교 도시환경재난관리전공) ;
  • 채수권 (을지대학교 보건환경안전학과)
  • Lim, Ga Kyun (Disaster Prevention Department, Kyongbo Engineering co.LTD) ;
  • Jeung, Se Jin (Kangwon Institute of Inclusive Technology) ;
  • Kim, Byung Sik (Department of Urban and Environmental Disaster Prevention Engineering Kangwon National University) ;
  • Chae, Soo Kwon (Department of Health, Environment and Safety, Eulji University)
  • 투고 : 2020.11.05
  • 심사 : 2020.11.19
  • 발행 : 2020.12.31

초록

본 논문에서는 미계측 유역에 적용할 수 있는 갈수지수 산정 회귀모형을 개발하고자 하였다. 30개의 중권역 유역을 대상으로 국가수자원종합관리시스템에서 제공하는 장기유출자료를 이용하여 평균 갈수량과 평균 저수량, 지속기간별 빈도별 갈수지수를 산정하였으며 이를 유역특성인자 18개와 기상특성인자 3개와의 상관 분석을 통하여 최종적으로 유역면적(A), 유역 평균 표고(H), 유역 평균 경사(S), 수계밀도(D), 유출곡선지수(CN), 연증발산량(ET), 연강수량(P)을 선정하여 다중회귀분석을 수행하여 갈수지수 회귀모형을 개발하였다. 개발된 회귀모형을 평가하기 위하여 10개의 검증유역을 미계측 유역으로 간주하여 평균제곱근오차(RMSE) 와 평균절대오차(MAE)를 이용하여 정확도를 추정하였다. 또한 기존의 평균갈수량산정 회귀모형과의 비교를 통하여 본 논문에서 개발한 모형의 우수성을 검토하였다.

This study aims to develop a regression model that estimates a low-flow index that can be applied to ungauged basins. A total of 30 midsized basins in South Korea use long-term runoff data provided by the National Integrated Water Management System (NIWMS) to calculate average low-flow, average minimum streamflow, and low-flow index duration and frequency. This information is used in the correlation analysis with 18 basin factors and 3 climate change factors to identify the basin area, average basin altitude, average basin slope, water system density, runoff curve number, annual evapotranspiration, and annual precipitation in the low-flow index regression model. This study evaluates the model's accuracy by using the root-mean-square error (RMSE) and the mean absolute error (MAE) for 10 ungauged, verified basins and compares them with the previous model's low-flow calculations to determine the effectiveness of the newly developed model. Comparative analysis indicates that the new regression model produces average low-flow, attributed to the consideration of varied basin and hydrologic factors during the new model's development.

키워드

참고문헌

  1. Choi, S.Y., Han, K.Y., and Kim B.H. (2012). "Comparison of different multiple linear regression models for real-time flood stage forecasting." Journal of the Korean Society of Civil Engineers B, Vol. 32, No. 1, pp. 9-20.
  2. Jang, D.J. (2013). "Estimation of critical duration using the multiple regression analysis." Journal of the Institute of Construction and Environment, Chungwoon University, Vol. 8, No. 1, pp. 27-35.
  3. Jo, T.G. (2007). "Improving low flow estimation for ungarged basins in Korea." Journal of Korea Water Resources Association, Vol. 40, No. 175, pp. 113-124. https://doi.org/10.3741/JKWRA.2007.40.2.113
  4. Lee, S.Y. (2017). Estimation of average low flow using base flow index for ungaged basin. Master Thesis, Inha University.
  5. Lee, T.H. (2016). Development of Regional regression model for estimating mean low flow in ungauged basins. Ph.D dissertation, Ajou University.
  6. Lee, T.H., Lee, M.H., and Lee, J.U. (2016). "Development of regional regression model for estimating flow duration curves in ungauged basins." Journal of the Korean Society of Civil Engineers, Vol. 36, No. 3, pp. 427-437. https://doi.org/10.12652/Ksce.2016.36.3.0427
  7. Ryoo, K.S., and Chong, K.Y. (2008). "Development of multiple regression models for the prediction of reservoir inflow in the flood season." 2008 Conference of Korean Society of Civil Engineers, pp. 3500-3503.
  8. Smakhtin, V.U. (2001), "Low flow hydrology: A review." Journal of Hydrology, Vol. 240, pp. 147-186. https://doi.org/10.1016/S0022-1694(00)00340-1
  9. Yoon, Y.N. (2007). Hydrology. Cheongmungak.