DOI QR코드

DOI QR Code

폐석탄광 하류 밭토양 및 논토양의 중금속 함량과 광물조성에 따른 분광학적 특성

Spectral Characteristics associated with Heavy Metal Concentration and Mineral Composition in Cropland and Rice Field Soils from Downstream of an Abandoned Coal Mine

  • 서지희 (충남대학교 우주.지질학과) ;
  • 유재형 (충남대학교 지질환경과학과) ;
  • 고상모 (한국지질자원연구원 DMR융합연구단) ;
  • 이범한 (한국지질자원연구원 DMR융합연구단)
  • Seo, Jihee (Department of Astronomy, Space Science, & Geology, Chungnam National University) ;
  • Yu, Jaehyung (Department of Geological Sciences, Chungnam National University) ;
  • Koh, Sang-Mo (Convergence research center for development of mineral resources (DMR), Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Bum Han (Convergence research center for development of mineral resources (DMR), Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2020.10.12
  • 심사 : 2020.12.02
  • 발행 : 2020.12.28

초록

본 연구는 폐석탄광산인 옥동탄광 하류에 위치한 밭토양과 논토양을 대상으로 중금속함량, 광물조성, 분광특성을 고찰하였다. X선 형광분석 결과 밭토양과 논토양 모두 비소가 토양환경오염 우려기준을 초과하여 검출되었으며 밭토양이 논토양보다 중금속오염지수가 상대적으로 높은 것을 확인하였다. X선 회절분석 결과 밭토양과 논토양 모두에서 석영, 방해석, 고령토, 일라이트, 스멕타이트, 자철석 그리고 적철석 광물이 검출되었다. 또한 유기물 분석을 실시한 결과 밭토양의 유기물 함량 변이가 더 큰 것으로 나타났다. 분광분석 결과 밭토양과 논토양의 전체적인 반사도 곡선의 양상과 흡광특성은 유사하게 발현됨을 확인하였다. 490nm 부근과 900nm 부근에서 토양 내 산화철에 의해, 1410nm, 1910nm 부근과 2200nm 부근에서 점토광물인 고령토와 스멕타이트군에 의한 흡광특성이 두드러지게 나타났으며 유기물의 함량이 많을수록 반사도가 감소하였다. 흡광 깊이는 밭토양과 논토양 모두 흡광특성이 발현되는 곳에서 오염 지수가 높아짐에 따라 흡광깊이는 얕아졌으며, 유기물 함량이 증가함에 따라 490nm 부근과 1916nm 부근의 흡광깊이가 얕아지는 경향을 보였다.

This study analyzed heavy metal concentration, mineral composition, and spectral characteristics of heavy metal contaminated soil samples of cropland and rice field located in downstream of abandoned Okdong coal mine. X-ray fluorescence analysis detected heavy metal elements including cadmium, copper, arsenic, lead, zinc and nickel in the soils. Both cropland and rice field samples were severely contaminated with arsenic showing higher concentration over the concerned standard. The pollution index of cropland samples was higher than that of rice field samples. X-ray powder diffraction analysis identified that the mineral composition of cropland and rice field samples is similar with quartz, calcite, kaolinite, illite, smectite, magnetite and hematite. The range of organic matter content were more widely distributed in cropland samples. The spectral analysis showed that the reflectance spectra and the absorption features of cropland and rice field samples were alike. The absorption features that appeared near 490nm and 900nm were attributed to the ferric iron, and clay minerals such as kaolinite and smectite caused the absorption features at 1410nm, 1910nm and 2200nm. The reflectance of the soil spectral decreased with an increase in organic content. The absorption depths of both types of soil samples decreased with higher organic matter content at 490nm and 1916nm as well as higher heavy metal concentration.

키워드

참고문헌

  1. 이규승, 신익종, 고광용 (2001) 보은 제일 폐탄광 주변 하천수의 중금속 오염과 인근 농경지와의 상관관계. 한국환경농학회 학술발표논문집, v.2001, n.1, p.122-122
  2. Allen SE. 1989. Chemical Analysis of Ecological Materials (2nd ed.). Blackwell Scientific Publications, Oxford.
  3. Baldridge, A.M., Hook, S.J., Grove, C.I. and Rivera, G. (2009) The ASTER spectral library version 2.0. Remote Sensing of Environment, v.113, n.4, p.711-715. https://doi.org/10.1016/j.rse.2008.11.007
  4. Bishop, J.L., Lane, M.D., Dyar, M.D. and Brown, A.J. (2008) Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaoliniteserpentines, chlorites and micas. Clay Minerals, v.43, n.1, p.35-54. https://doi.org/10.1180/claymin.2008.043.1.03
  5. Bowell, R.J. (1994) Sorption of arsenic by iron oxides and oxyhydroxides in soils. Applied Geochemistry, v.9, p.279-286. https://doi.org/10.1016/0883-2927(94)90038-8
  6. Bradl, H.B. (2004) Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, v.277, n.1, p.1-18. https://doi.org/10.1016/j.jcis.2004.04.005
  7. Choe, E.Y., Hong, S.Y., Kim, K.W., Kim, Y.H. and Zhang, Y.S. (2010) Monitoring of Soil Properties using VNIR Spectroscopy. Korean Society of Soil Science and Fertilizer, p.94-103 (in Korean).
  8. Choe, E.Y., Hong, S.Y., Kim, Y.H. and Zhang, Y.S. (2010) Estimation and Mapping of Soil Organic Matter using Visible-Near Infrared Spectroscopy. Korean J. Soil Sci. Fert, v.43, n.6, p.968-974.
  9. Choi, S.G., Park, S.J., Lee, P.K. and Kim, C.S. (2004) An overview of geoenvironmental implications of mineral deposits in Korea. The Korean Society of Economic and Environmental Geology, v.37, 1-19 (in Korean).
  10. Choi, S.J., Kim, C.H. and Lee, S.G. (2009) Comparison of the Heavy Metal Analysis in Soil Samples by BenchTop ED-XRF and Field-Potable XRF. Analytical Science and Technology, v.22, n.4, p.293-301 (in Korean with English abstract).
  11. Clark, R.N., Swayze, G.A., Wise, R., Livo, K.E., Hoefen, T., Kokaly, R.F. and Sutley, S.J. (2007) USGS digital spectral library splib06a. US Geological Survey, Digital Data Series, 231.
  12. Desouza, E.D., Gherase, M.R., Fleming, D.E.B., Chettle, D.R., O'Meara, J.M. and McNeill, F.E. (2017) Performance comparison of two Olympus InnovX handheld x-ray analyzers for feasibility of measuring arsenic in skin in vivo-Alpha and Delta models. Applied Radiation and Isotopes, v.123, p.82-93. https://doi.org/10.1016/j.apradiso.2017.02.029
  13. Gier, S. and Johns, W.D. (2000) Heavy metal-adsorption on micas and clay mineralsstudied by X-ray photoelectron spectroscopy. Applied Clay Science, v.16, p.289-299. https://doi.org/10.1016/S0169-1317(00)00004-1
  14. Jeong, Y., Yu, J., Wang, L. and Shin, J. (2018) Spectral-responses of As and Pb contamination in tailings of a hydrothermal ore deposit: A case study of Samgwang mine, South Korea. Remote Sensing, v.10, n.11, 1830. https://doi.org/10.3390/rs10111830
  15. Jeong, Y.S., Yu, J.H., Koh, S.M. and Heo, C.H. (2014) Spectroscopy of Skarn Minerals in Dangdu Pb-Zn Deposit and Assessment of Skarn Exploration Approaches Employing Portable Spectrometer. J. Miner. Soc. Korea, v.27, n.3, p.135-147 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2014.27.3.135
  16. Jung, G.B., Kim, W.I., Lee, J.S., Lee, J.S., Park, C.W. and Koh, M.H. (2005) Characteristics of heavy metal contamination in residual mine tailings near abandoned metalliferous mines in Korea. Korean Journal of Environmental Agriculture, v.24, n.3, p222-231 (in Korean with English abstract). https://doi.org/10.5338/KJEA.2005.24.3.222
  17. Jung, M.C. (2003) Environmental Assessment for Acid Mine Drainage by Past Coal Mining Activities in the Youngwol, Jungseon and Pyungchang areas, Korea. Econ. Environ. Geol., v.36, n.2, p.111-121.
  18. Kang, S.J., Lee, K.Y., Jeon, E.I., Shin, I.H., Yu, S.J. and Kwon, O.S. (2018) A Study on Interference Effect by pH and Organic Matter in Heavy Metal Contaminated Soil Detection Using Hyperspectral Image. J. Korean Soc. Hazard Mitig, v.18, n.4, p.375-383. https://doi.org/10.9798/kosham.2018.18.4.375
  19. Kerr, A., Rafuse, H., Sparkes, G., Hinchey, J. and Sandeman, H. (2011) Visible/infrared spectroscopy (VIRS) as a research tool in economic geology: Background and pilot studies from Newfoundland and Labrador. Geological Survey, Report, v.11, p.145-166.
  20. Kim, H.J., Yang, J.E., Lee, J.Y., Choi, S.I. and Jun, S.H. (2003) Fraction and Soil Pollution Assessment Index of heavy metals in cultivated land soils near the abandoned mine. J. KoSSGE, v.8, n.4, p.53-63.
  21. Kim, H.J., Jeong, H.R., Ku, J.J., Choi, K., Park, K.W. and Cho, D.S. (2012) Environmental Characteristics and Vegetation of the Natural Habitats of Korean Endemic Plant Eranthis byunsanensis B.Y. Sun. Korean J. Environ. Biol., v.30, n.2, p.90-97.
  22. Kim, H.J., Baek, Y.M., Jung, K.H., Hong, Y.S., Heo, J.H., Seong, J.U. and Park, J.C. (2013) Measurement of Heavy Metals Using Portable XRF in Children's Playing Goods. Journal of Environmental Science International, v.22, n.4, p.471-479. https://doi.org/10.5322/JESI.2013.22.4.471
  23. Ko, M.S., Ji, W.H., Kim, Y.G. and Park, H.S. (2019) Stabilization of Arsenic in Soil around the Abandoned Coal-Mine Using Mine Sludge Pellets. Econ. Environ. Geol., v.52, n.1, p.29-35. https://doi.org/10.9719/EEG.2019.52.1.29
  24. Kwon, J.C., Lee, J.S. and Jung, M.C. (2012) Arsenic contamination in agricultural soils surrounding mining sites in relation to geology and mineralization types. Appl. Geochem, v.27, p.1020-1026. https://doi.org/10.1016/j.apgeochem.2011.11.015
  25. Lee, C.R. (2018) Yearbook of MIRECO Statistics, Mine reclamation corporation, coal center, Seoul.
  26. Lee, G.S. and Song, Y.J. (2010) Characterization of Leaching of Heavy Metal and Formation of Acid Mine Drainage from Coal Mine Tailings. J. of Korean Inst. of Resources Recycling, v.19, n.2, p.54-62.
  27. Lim, J.H., Yu, J.H., Shin, J.H. and Koh, S.M. (2019a) Comparative Analysis of Heavy Metal Contamination, Mineral Composition and Spectral Characteristics of White, Reddish Brown and Mixed Precipitates Occurring at Osip Stream Drainage, Gangwondo, South Korea. Econ. Environ. Geol., v.52, n.1, p.13-28. https://doi.org/10.9719/EEG.2019.52.1.13
  28. Lim, J.H., Yu, J.H., Shin, J.H., Jeong, Y.S., Koh, S.M. and Park, G.S. (2017) Heavy Metal Contamination Characteristics and Spectral Characteristics of White Precipitation occurring at Miin Falls Drainage. J. Miner. Soc. Korea, v.30, n.1, p.31-43. https://doi.org/10.9727/jmsk.2016.30.1.31
  29. Lim, J.H., Yu, J.H., Wang, L., Jeong, Y.S. and Shin, J.H. (2019b) Heavy Metal Contamination Index Using Spectral Variables for White Precipitates Induced by Acid Mine Drainage: A Case Study of Soro Creek, South Korea. IEEE Transactions on Geosciences and Remote Sensing, v.57, n.7, p.4870-4888. https://doi.org/10.1109/TGRS.2019.2893664
  30. Liu, K., Zhao, D., Fang, J.Y., Zhang, X., Zhang, Q.Y. and Li, X.K. (2017) Estimation of Heavy-Metal Contamination in Soil Using Remote Sensing Spectroscopy and a Statistical Approach. J Indian Soc Remote Sens, v.45, n.5, p.805-813. https://doi.org/10.1007/s12524-016-0648-4
  31. Min, E.S., Song, S.H. and Kim, M.H. (1998) Heavy Metal Pollution in Soil and Vegetation near the Closed Daeseong Coal Mine in Keumsan, Chungnam. Journal of KoSES, v.3, n.2, p.41-51.
  32. Min, J.G., Park, E.H., Moon H.S. and Kim, J.K. (2005) Chemical Properties and Heavy Metal Content of Forest Soils around Abandoned Coal Mine Lands in the Mungyeong Area. Korean Journal of Agricultural and Forest, v.7, n.4, p.265-273.
  33. Ministry of Environment (2014) A Report of Soil Pollution Investigation abandon.
  34. Park, C.Y., Jeoung, Y.J. and Kim, S.K. (2001) Mineralogy and geochemistry of iron hydroxides in the stream of abandoned gold mine in Kwangyang, Korea. Journal of the Korean Earth Science Society, v.22, n.3, p.208-222 (in Korean and English abstract).
  35. Ravet, N., Chouinard, Y., Magnan, J. F., Besner, S., Gauthier, M. and Armand, M. (2001) Electroactivity of natural and synthetic triphylite. Journal of Power Sources, v.97, p.503-507. https://doi.org/10.1016/S0378-7753(01)00727-3
  36. Rossel, R.A.V. and Behrens, T. (2010) Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, v.158, n.1, p46-54. https://doi.org/10.1016/j.geoderma.2009.12.025
  37. Sharma, A., Weindorf, D. C., Wang, D. and Chakraborty, S. (2015) Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC). Geoderma, v.239, p.130-134. https://doi.org/10.1016/j.geoderma.2014.10.001
  38. Shefsky, S. (1997) Comparing Field Portable X-Ray Fluorescence (XRF) to laboratory analysis of heavy metals in soil. In International Symposium of Field Screening Methods for Hazardous Wastes and Toxic Chemicals, Las Vegas, NV, 29-31 January.
  39. Sherman, D.M. and Waite, T.D. (1985) Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. American Mineralogist, v.70, p.1262-1269.
  40. Shin, J.H., Yu, J.H., Jeong, Y.S., Kim, S.Y., Koh, S.M. and Park, G.S. (2016) Spectral Characteristics of Heavy Metal Contaminated Soils in the Vicinity of Boksu Mine. J. Miner. Soc. Korea, v.29, n.3, p.89-101. https://doi.org/10.9727/jmsk.2016.29.3.89
  41. Shin, J.H., Yu, J.H., Wang, L., Kim, J.E., Koh, S.M. and Kim, S.O. (2019) Spectral Responses of Heavy Metal Contaminated Soils in the Vicinity of a Hydrothermal Ore Deposit: A Case Study of Boksu Mine, South Korea. IEEE Transaction on Geoscience and Remote Sensing, v.57, n.6, p.4092-4106. https://doi.org/10.1109/tgrs.2018.2889748
  42. Thompson, A.J., Hauff, P.L. and Robitaille, A.J. (1999) Alteration mapping in exploration: application of short-wave infrared (SWIR) spectroscopy. SEG newsletter, v.39, p.16-27.
  43. Um, T.H., Kim, Y.T., Lee, K.G., Kim, Y.J., Kang, S.G. and Kim, J.H. (2002) Properties of heavy metal absorption of clay minerals. Journal of the Korean Ceramic Society, v.39, n.7, p.663-668 (in Korean with English abstract). https://doi.org/10.4191/KCERS.2002.39.7.663
  44. USEPA (2007) Method 6200: Field Portable X-ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment. Available. online at: http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/6200.pdf (verified 30.04.13.).
  45. Usman, A.R.A. (2008) The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt. Geoderma, v.144, n.1, p.334-343. https://doi.org/10.1016/j.geoderma.2007.12.004
  46. Wang, S. and Mulligan, C.N. (2006) Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Sci. Total Environ., v.366, p.701-721. https://doi.org/10.1016/j.scitotenv.2005.09.005
  47. Weindorf, D.C., Zhu, Y., Chakraborty, S., Bakr, N. and Huang, B. (2012) Use of portable X-ray fluorescence spectrometry for environmental quality assessment of peri-urban agriculture. Environmental Monitoring and Assessment, v.184, n.1, p.217-227. https://doi.org/10.1007/s10661-011-1961-6
  48. Weindorf, D.C., Paulette, L. and Man, T. (2013) In-situ assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania. Environmental pollution, v.182, p.92-100. https://doi.org/10.1016/j.envpol.2013.07.008