DOI QR코드

DOI QR Code

Substrate specificity of bacterial endoribonuclease toxins

  • Han, Yoontak (Department of Life Sciences, Korea University) ;
  • Lee, Eun-Jin (Department of Life Sciences, Korea University)
  • Received : 2020.09.11
  • Published : 2020.12.31

Abstract

Bacterial endoribonuclease toxins belong to a protein family that inhibits bacterial growth by degrading mRNA or rRNA sequences. The toxin genes are organized in pairs with its cognate antitoxins in the chromosome and thus the activities of the toxins are antagonized by antitoxin proteins or RNAs during active translation. In response to a variety of cellular stresses, the endoribonuclease toxins appear to be released from antitoxin molecules via proteolytic cleavage of antitoxin proteins or preferential degradation of antitoxin RNAs and cleave a diverse range of mRNA or rRNA sequences in a sequence-specific or codon-specific manner, resulting in various biological phenomena such as antibiotic tolerance and persister cell formation. Given that substrate specificity of each endoribonuclease toxin is determined by its structure and the composition of active site residues, we summarize the biology, structure, and substrate specificity of the updated bacterial endoribonuclease toxins.

Keywords

References

  1. Nierlich DP (1978) Regulation of bacterial growth, RNA, and protein synthesis. Annu Rev Microbiol 32, 393-432 https://doi.org/10.1146/annurev.mi.32.100178.002141
  2. Harms A, Brodersen DE, Mitarai N and Gerdes K (2018) Toxins, Targets, and Triggers: An overview of toxin-antitoxin biology. Mol Cell 70, 768-784 https://doi.org/10.1016/j.molcel.2018.01.003
  3. Page R and Peti W (2016) Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol 12, 208-214 https://doi.org/10.1038/nchembio.2044
  4. Zhang Y, Zhang J, Hoeflich KP, Ikura M, Qing G and Inouye M (2003) MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol Cell 12, 913-923 https://doi.org/10.1016/S1097-2765(03)00402-7
  5. Pedersen K, Zavialov AV, Pavlov MY, Elf J, Gerdes K and Ehrenberg M (2003) The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell 112, 131-140 https://doi.org/10.1016/S0092-8674(02)01248-5
  6. Zhang Y, Zhang J, Hara H, Kato I and Inouye M (2005) Insights into the mRNA cleavage mechanism by MazF, an mRNA interferase. J Biol Chem 280, 3143-3150 https://doi.org/10.1074/jbc.M411811200
  7. Jorgensen MG, Pandey DP, Jaskolska M and Gerdes K (2009) HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea. J Bacteriol 191, 1191-1199 https://doi.org/10.1128/JB.01013-08
  8. Christensen-Dalsgaard M, Jorgensen MG and Gerdes K (2010) Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Mol Microbiol 75, 333-348 https://doi.org/10.1111/j.1365-2958.2009.06969.x
  9. Winther KS, Brodersen DE, Brown AK and Gerdes K (2013) VapC20 of Mycobacterium tuberculosis cleaves the sarcin-ricin loop of 23S rRNA. Nat Commun 4, 2796 https://doi.org/10.1038/ncomms3796
  10. Winther KS and Gerdes K (2011) Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. Proc Natl Acad Sci U S A 108, 7403-7407 https://doi.org/10.1073/pnas.1019587108
  11. Germain E, Castro-Roa D, Zenkin N and Gerdes K (2013) Molecular mechanism of bacterial persistence by HipA. Mol Cell 52, 248-254 https://doi.org/10.1016/j.molcel.2013.08.045
  12. Castro-Roa D, Garcia-Pino A, De Gieter S, van Nuland NAJ, Loris R and Zenkin N (2013) The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu. Nat Chem Biol 9, 811-817 https://doi.org/10.1038/nchembio.1364
  13. Cruz JW, Rothenbacher FP, Maehigashi T, Lane WS, Dunham CM and Woychik NA (2014) Doc toxin is a kinase that inactivates elongation factor Tu. J Biol Chem 289, 7788-7798 https://doi.org/10.1074/jbc.M113.544429
  14. Cheverton AM, Gollan B, Przydacz M et al (2016) A Salmonella toxin promotes persister formation through acetylation of tRNA. Mol Cell 63, 86-96 https://doi.org/10.1016/j.molcel.2016.05.002
  15. Wilcox B, Osterman I, Serebryakova M et al (2018) Escherichia coli ItaT is a type II toxin that inhibits translation by acetylating isoleucyl-tRNAIle. Nucleic Acids Res 46, 7873-7885 https://doi.org/10.1093/nar/gky560
  16. Klumpp S, Scott M, Pedersen S and Hwa T (2013) Molecular crowding limits translation and cell growth. Proc Natl Acad Sci U S A 110, 16754-16759 https://doi.org/10.1073/pnas.1310377110
  17. Zhu M and Dai X (2018) On the intrinsic constraint of bacterial growth rate: M. tuberculosis's view of the protein translation capacity. Crit Rev Microbiol 44, 455-464 https://doi.org/10.1080/1040841X.2018.1425672
  18. Kamada K, Hanaoka F and Burley SK (2003) Crystal structure of the MazE/MazF complex: molecular bases of antidote-toxin recognition. Mol Cell 11, 875-884 https://doi.org/10.1016/S1097-2765(03)00097-2
  19. Pandey DP and Gerdes K (2005) Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33, 966-976 https://doi.org/10.1093/nar/gki201
  20. Zhang Y and Inouye M (2009) The inhibitory mechanism of protein synthesis by YoeB, an Escherichia coli toxin. J Biol Chem 284, 6627-6638 https://doi.org/10.1074/jbc.M808779200
  21. Christensen SK, Mikkelsen M, Pedersen K and Gerdes K (2001) RelE, a global inhibitor of translation, is activated during nutritional stress. Proc Natl Acad Sci U S A 98, 14328-14333 https://doi.org/10.1073/pnas.251327898
  22. Overgaard M, Borch J and Gerdes K (2009) RelB and RelE of Escherichia coli form a tight complex that represses transcription via the ribbon-helix-helix motif in RelB. J Mol Biol 394, 183-196 https://doi.org/10.1016/j.jmb.2009.09.006
  23. Boggild A, Sofos N, Andersen KR et al (2012) The crystal structure of the intact E. coli RelBE toxin-antitoxin complex provides the structural basis for conditional cooperativity. Structure 20, 1641-1648 https://doi.org/10.1016/j.str.2012.08.017
  24. Hwang JY and Buskirk AR (2017) A ribosome profiling study of mRNA cleavage by the endonuclease RelE. Nucleic Acids Res 45, 327-336 https://doi.org/10.1093/nar/gkw944
  25. Neubauer C, Gao YG, Andersen KR et al (2009) The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE. Cell 139, 1084-1095 https://doi.org/10.1016/j.cell.2009.11.015
  26. Christensen SK and Gerdes K (2003) RelE toxins from bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Mol Microbiol 48, 1389-1400 https://doi.org/10.1046/j.1365-2958.2003.03512.x
  27. Christensen SK, Pedersen K, Hansen FG and Gerdes K (2003) Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. J Mol Biol 332, 809-819 https://doi.org/10.1016/S0022-2836(03)00922-7
  28. Condon C (2006) Shutdown decay of mRNA. Mol Microbiol 61, 573-583 https://doi.org/10.1111/j.1365-2958.2006.05270.x
  29. Christensen SK, Maenhaut-Michel G, Mine N, Gottesman S, Gerdes K and Van Melderen L (2004) Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: involvement of the yefM-yoeB toxin-antitoxin system. Mol Microbiol 51, 1705-1717 https://doi.org/10.1046/j.1365-2958.2003.03941.x
  30. Feng S, Chen Y, Kamada K et al (2013) YoeB-ribosome structure: a canonical RNase that requires the ribosome for its specific activity. Nucleic Acids Res 41, 9549-9556 https://doi.org/10.1093/nar/gkt742
  31. Pavelich IJ, Maehigashi T, Hoffer ED, Ruangprasert A, Miles SJ and Dunham CM (2019) Monomeric YoeB toxin retains RNase activity but adopts an obligate dimeric form for thermal stability. Nucleic Acids Res 47, 10400-10413 https://doi.org/10.1093/nar/gkz760
  32. Christensen-Dalsgaard M and Gerdes K (2008) Translation affects YoeB and MazF messenger RNA interferase activities by different mechanisms. Nucleic Acids Res 36, 6472-6481 https://doi.org/10.1093/nar/gkn667
  33. McKenzie GJ, Magner DB, Lee PL and Rosenberg SM (2003) The dinB operon and spontaneous mutation in Escherichia coli. J Bacteriol 185, 3972-3977 https://doi.org/10.1128/JB.185.13.3972-3977.2003
  34. Zhang Y, Yamaguchi Y and Inouye M (2009) Characterization of YafO, an Escherichia coli toxin. J Biol Chem 284, 25522-25531 https://doi.org/10.1074/jbc.M109.036624
  35. Motiejunaite R, Armalyte J, Markuckas A and Suziedeliene E (2007) Escherichia coli dinJ-yafQ genes act as a toxin-antitoxin module. FEMS Microbiol Lett 268, 112-119 https://doi.org/10.1111/j.1574-6968.2006.00563.x
  36. Prysak MH, Mozdzierz CJ, Cook AM et al (2009) Bacterial toxin YafQ is an endoribonuclease that associates with the ribosome and blocks translation elongation through sequence-specific and frame-dependent mRNA cleavage. Mol Microbiol 71, 1071-1087 https://doi.org/10.1111/j.1365-2958.2008.06572.x
  37. Maehigashi T, Ruangprasert A, Miles SJ and Dunham CM (2015) Molecular basis of ribosome recognition and mRNA hydrolysis by the E. coli YafQ toxin. Nucleic Acids Res 43, 8002-8012 https://doi.org/10.1093/nar/gkv791
  38. Kolodkin-Gal I, Verdiger R, Shlosberg-Fedida A and Engelberg-Kulka H (2009) A differential effect of E. coli toxin-antitoxin systems on cell death in liquid media and biofilm formation. PLoS One 4, e6785 https://doi.org/10.1371/journal.pone.0006785
  39. Tian QB, Ohnishi M, Tabuchi A and Terawaki Y (1996) A new plasmid-encoded proteic killer gene system: cloning, sequencing, and analyzing hig locus of plasmid Rts1. Biochem Biophys Res Commun 220, 280-284 https://doi.org/10.1006/bbrc.1996.0396
  40. Hurley JM and Woychik NA (2009) Bacterial toxin HigB associates with ribosomes and mediates translation-dependent mRNA cleavage at A-rich sites. J Biol Chem 284, 18605-18613 https://doi.org/10.1074/jbc.M109.008763
  41. Schureck MA, Dunkle JA, Maehigashi T, Miles SJ and Dunham CM (2015) Defining the mRNA recognition signature of a bacterial toxin protein. Proc Natl Acad Sci U S A 112, 13862-13867 https://doi.org/10.1073/pnas.1512959112
  42. Schureck MA, Repack A, Miles SJ, Marquez J and Dunham CM (2016) Mechanism of endonuclease cleavage by the HigB toxin. Nucleic Acids Res 44, 7944-7953 https://doi.org/10.1093/nar/gkw598
  43. Coles M, Djuranovic S, Soding J et al (2005) AbrB-like transcription factors assume a swapped hairpin fold that is evolutionarily related to double-psi beta barrels. Structure 13, 919-928 https://doi.org/10.1016/j.str.2005.03.017
  44. Schmidt O, Schuenemann VJ, Hand NJ et al (2007) prlF and yhaV encode a new toxin-antitoxin system in Escherichia coli. J Mol Biol 372, 894-905 https://doi.org/10.1016/j.jmb.2007.07.016
  45. Choi W, Yamaguchi Y, Lee JW et al (2017) Translation-dependent mRNA cleavage by YhaV in Escherichia coli. FEBS Lett 591, 1853-1861 https://doi.org/10.1002/1873-3468.12705
  46. Snyder WB and Silhavy TJ (1992) Enhanced export of beta-galactosidase fusion proteins in prlF mutants is Lon dependent. J Bacteriol 174, 5661-5668 https://doi.org/10.1128/jb.174.17.5661-5668.1992
  47. Aizenman E, Engelberg-Kulka H and Glaser G (1996) An Escherichia coli chromosomal "addiction module" regulated by guanosine [corrected] 3',5'-bispyrophosphate: a model for programmed bacterial cell death. Proc Natl Acad Sci U S A 93, 6059-6063 https://doi.org/10.1073/pnas.93.12.6059
  48. Vesper O, Amitai S, Belitsky M et al (2011) Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell 147, 147-157 https://doi.org/10.1016/j.cell.2011.07.047
  49. Culviner PH and Laub MT (2018) Global analysis of the E. coli toxin mazF reveals widespread cleavage of mRNA and the inhibition of rRNA maturation and ribosome biogenesis. Mol Cell 70, 868-880 e810 https://doi.org/10.1016/j.molcel.2018.04.026
  50. Park JH, Yamaguchi Y and Inouye M (2011) Bacillus subtilis MazF-bs (EndoA) is a UACAU-specific mRNA interferase. FEBS Lett 585, 2526-2532 https://doi.org/10.1016/j.febslet.2011.07.008
  51. Miyamoto T, Ota Y, Yokota A, Suyama T, Tsuneda S and Noda N (2017) Characterization of a Deinococcus radiodurans MazF: A UACA-specific RNA endoribonuclease. Microbiologyopen 6, e00501 https://doi.org/10.1002/mbo3.501
  52. Nariya H and Inouye M (2008) MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell 132, 55-66 https://doi.org/10.1016/j.cell.2007.11.044
  53. Tiwari P, Arora G, Singh M, Kidwai S, Narayan OP and Singh R (2015) MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs. Nat Commun 6, 6059 https://doi.org/10.1038/ncomms7059
  54. Hazan R and Engelberg-Kulka H (2004) Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Mol Genet Genomics 272, 227-234 https://doi.org/10.1007/s00438-004-1048-y
  55. Tripathi A, Dewan PC, Siddique SA and Varadarajan R (2014) MazF-induced growth inhibition and persister generation in Escherichia coli. J Biol Chem 289, 4191-4205 https://doi.org/10.1074/jbc.M113.510511
  56. Masuda Y, Miyakawa K, Nishimura Y and Ohtsubo E (1993) chpA and chpB, Escherichia coli chromosomal homologs of the pem locus responsible for stable maintenance of plasmid R100. J Bacteriol 175, 6850-6856 https://doi.org/10.1128/jb.175.21.6850-6856.1993
  57. Zhang Y, Zhu L, Zhang J and Inouye M (2005) Characterization of ChpBK, an mRNA interferase from Escherichia coli. J Biol Chem 280, 26080-26088 https://doi.org/10.1074/jbc.M502050200
  58. Tsuchimoto S, Nishimura Y and Ohtsubo E (1992) The stable maintenance system pem of plasmid R100: degradation of PemI protein may allow PemK protein to inhibit cell growth. J Bacteriol 174, 4205-4211 https://doi.org/10.1128/jb.174.13.4205-4211.1992
  59. Tsuchimoto S, Ohtsubo H and Ohtsubo E (1988) Two genes, pemK and pemI, responsible for stable maintenance of resistance plasmid R100. J Bacteriol 170, 1461-1466 https://doi.org/10.1128/jb.170.4.1461-1466.1988
  60. Zhang J, Zhang Y, Zhu L, Suzuki M and Inouye M (2004) Interference of mRNA function by sequence-specific endoribonuclease PemK. J Biol Chem 279, 20678-20684 https://doi.org/10.1074/jbc.M314284200
  61. Kasari V, Kurg K, Margus T, Tenson T and Kaldalu N (2010) The Escherichia coli mqsR and ygiT genes encode a new toxin-antitoxin pair. J Bacteriol 192, 2908-2919 https://doi.org/10.1128/JB.01266-09
  62. Yamaguchi Y, Park JH and Inouye M (2009) MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. J Biol Chem 284, 28746-28753 https://doi.org/10.1074/jbc.M109.032904
  63. Fraikin N, Rousseau CJ, Goeders N and Van Melderen L (2019) Reassessing the role of the type II MqsRA toxin-antitoxin system in stress response and biofilm formation: mqsA is transcriptionally uncoupled from mqsR. mBio 10, e02678-19
  64. Gonzalez Barrios AF, Zuo R, Hashimoto Y, Yang L, Bentley WE and Wood TK (2006) Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 188, 305-316 https://doi.org/10.1128/JB.188.1.305-316.2006
  65. Kim Y and Wood TK (2010) Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochem Biophys Res Commun 391, 209-213 https://doi.org/10.1016/j.bbrc.2009.11.033
  66. Brown BL, Grigoriu S, Kim Y et al (2009) Three dimensional structure of the MqsR:MqsA complex: a novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties. PLoS Pathog 5, e1000706 https://doi.org/10.1371/journal.ppat.1000706
  67. Mhlanga-Mutangadura T, Morlin G, Smith AL, Eisenstark A and Golomb M (1998) Evolution of the major pilus gene cluster of Haemophilus influenzae. J Bacteriol 180, 4693-4703 https://doi.org/10.1128/jb.180.17.4693-4703.1998
  68. Makarova KS, Grishin NV and Koonin EV (2006) The HicAB cassette, a putative novel, RNA-targeting toxin-antitoxin system in archaea and bacteria. Bioinformatics 22, 2581-2584 https://doi.org/10.1093/bioinformatics/btl418
  69. Turnbull KJ and Gerdes K (2017) HicA toxin of Escherichia coli derepresses hicAB transcription to selectively produce HicB antitoxin. Mol Microbiol 104, 781-792 https://doi.org/10.1111/mmi.13662
  70. Kawano M, Aravind L and Storz G (2007) An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Mol Microbiol 64, 738-754 https://doi.org/10.1111/j.1365-2958.2007.05688.x
  71. Emond E, Dion E, Walker SA, Vedamuthu ER, Kondo JK and Moineau S (1998) AbiQ, an abortive infection mechanism from Lactococcus lactis. Appl Environ Microbiol 64, 4748-4756 https://doi.org/10.1128/aem.64.12.4748-4756.1998
  72. Forde A and Fitzgerald GF (1999) Bacteriophage defence systems in lactic acid bacteria. Antonie Van Leeuwenhoek 76, 89-113 https://doi.org/10.1023/A:1002027321171
  73. Samson JE, Spinelli S, Cambillau C and Moineau S (2013) Structure and activity of AbiQ, a lactococcal endoribonuclease belonging to the type III toxin-antitoxin system. Mol Microbiol 87, 756-768 https://doi.org/10.1111/mmi.12129
  74. Belanger M and Moineau S (2015) Mutational analysis of the antitoxin in the lactococcal Type III toxin-antitoxin system AbiQ. Appl Environ Microbiol 81, 3848-3855 https://doi.org/10.1128/AEM.00572-15
  75. Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS and Salmond GP (2009) The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci U S A 106, 894-899 https://doi.org/10.1073/pnas.0808832106
  76. Short FL, Pei XY, Blower TR et al (2013) Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot. Proc Natl Acad Sci U S A 110, E241-249 https://doi.org/10.1073/pnas.1216039110
  77. Blower TR, Pei XY, Short FL et al (2011) A processed noncoding RNA regulates an altruistic bacterial antiviral system. Nat Struct Mol Biol 18, 185-190 https://doi.org/10.1038/nsmb.1981
  78. Muthuramalingam M, White JC and Bourne CR (2016) Toxin-antitoxin modules are pliable switches activated by multiple protease pathways. Toxins (Basel) 8, 214 https://doi.org/10.3390/toxins8070214
  79. Tian QB, Ohnishi M, Murata T, Nakayama K, Terawaki Y and Hayashi T (2001) Specific protein-DNA and protein-protein interaction in the hig gene system, a plasmid-borne proteic killer gene system of plasmid Rts1. Plasmid 45, 63-74 https://doi.org/10.1006/plas.2000.1506
  80. Samson JE, Belanger M and Moineau S (2013) Effect of the abortive infection mechanism and type III toxin/antitoxin system AbiQ on the lytic cycle of Lactococcus lactis phages. J Bacteriol 195, 3947-3956 https://doi.org/10.1128/JB.00296-13
  81. Takagi H, Kakuta Y, Okada T, Yao M, Tanaka I and Kimura M (2005) Crystal structure of archaeal toxin-antitoxin RelE-RelB complex with implications for toxin activity and antitoxin effects. Nat Struct Mol Biol 12, 327-331 https://doi.org/10.1038/nsmb911
  82. Kamada K and Hanaoka F (2005) Conformational change in the catalytic site of the ribonuclease YoeB toxin by YefM antitoxin. Mol Cell 19, 497-509 https://doi.org/10.1016/j.molcel.2005.07.004
  83. Schureck MA, Maehigashi T, Miles SJ et al (2014) Structure of the Proteus vulgaris HigB-(HigA)2-HigB toxin-antitoxin complex. J Biol Chem 289, 1060-1070 https://doi.org/10.1074/jbc.M113.512095
  84. Ruangprasert A, Maehigashi T, Miles SJ, Giridharan N, Liu JX and Dunham CM (2014) Mechanisms of toxin inhibition and transcriptional repression by Escherichia coli DinJ-YafQ. J Biol Chem 289, 20559-20569 https://doi.org/10.1074/jbc.M114.573006
  85. Harrison JJ, Wade WD, Akierman S et al (2009) The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrob Agents Chemother 53, 2253-2258 https://doi.org/10.1128/AAC.00043-09
  86. Maisonneuve E, Castro-Camargo M and Gerdes K (2013) (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 154, 1140-1150 https://doi.org/10.1016/j.cell.2013.07.048
  87. Norton JP and Mulvey MA (2012) Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli. PLoS Pathog 8, e1002954 https://doi.org/10.1371/journal.ppat.1002954
  88. Wang X and Wood TK (2011) Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl Environ Microbiol 77, 5577-5583 https://doi.org/10.1128/AEM.05068-11
  89. Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA and Holden DW (2014) Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343, 204-208 https://doi.org/10.1126/science.1244705
  90. Pontes MH and Groisman EA (2019) Slow growth determines nonheritable antibiotic resistance in Salmonella enterica. Sci Signal 12, eaax3938 https://doi.org/10.1126/scisignal.aax3938
  91. Harms A, Fino C, Sorensen MA, Semsey S and Gerdes K (2017) Prophages and growth dynamics confound experimental results with antibiotic-tolerant persister cells. mBio 8, e01964-17
  92. Zhu L, Inoue K, Yoshizumi S et al (2009) Staphylococcus aureus MazF specifically cleaves a pentad sequence, UACAU, which is unusually abundant in the mRNA for pathogenic adhesive factor SraP. J Bacteriol 191, 3248-3255 https://doi.org/10.1128/JB.01815-08