Acknowledgement
This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2015S1A5A2A03049830)
References
- R. D. Holt, J. Grover, and D. Tilman, Simple rules for interspecific dominance in systems with exploitative and apparent competition, American Naturalist, 144 (1994), 741-771. https://doi.org/10.1086/285705
- A. Hastings, Can spatial variation alone lead to selection for dispersal?, Theoretical Population Biology, 24 (1983), 244-251. https://doi.org/10.1016/0040-5809(83)90027-8
- R. D. Holt and M. A. McPeek, Chaotic population-dynamics favors the evolution of dispersal, American Naturalist, 148 (1996), 709-718. https://doi.org/10.1086/285949
- M. A. Harrison, Y.-C. Lai, and R. D. Holt, A dynamical mechanism for coexistence of dispersing species without trade-offs in spatially extended ecological systems, Physical Review E, 63 (2001), 051905. https://doi.org/10.1103/PhysRevE.63.051905
- M. A. Harrison, Y.-C. Lai, and R. D. Holt, Dynamical mechanism for coexistence of dispersing species, Journal of Theoretical Biology, 213 (2001), 53-72. https://doi.org/10.1006/jtbi.2001.2404
- M. A. Nowak and R. M. May, Evolutionary games and spatial chaos, Nature, 359 (1992), 826-829. https://doi.org/10.1038/359826a0
- G. Szabo and C. Toke, Evolutionary prisoner's dilemma game on a square lattice, Physical Review E, 58 (1998), 69-73. https://doi.org/10.1103/physreve.58.69
- R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species, SIAM Journal on Applied Mathematics, 29 (1975), 243-253. https://doi.org/10.1137/0129022
- J. Hofbauer and K. Sigmund, Evolutionary games and population dynamics, Cambridge University Press, Cambridge, 1998.
- T. Reichenbach, M. Mobilia, and E. Frey, Mobility promotes and jeopardizes biodiversity in rock-paperscissors games, Nature, 448 (2007), 1046-1049. https://doi.org/10.1038/nature06095
- T. Reichenbach, M. Mobilia, and E. Frey, Self-organization of mobile populations in cyclic competition, Journal of Theoretical Biology, 254 (2008), 368-383. https://doi.org/10.1016/j.jtbi.2008.05.014
- L. Frachebourg, P. L. Krapivsky, and E. Ben-Naim, Spatial organization in cyclic Lotka-Volterra systems, Physical Review E, 54 (1996), 6186-6200. https://doi.org/10.1103/PhysRevE.54.6186
- J. Knebel, T. Kruger, M. F. Weber, and E. Frey, Coexistence and survival in conservative Lotka-Volterra networks, Physical Review Letters, 110 (2013), 168106. https://doi.org/10.1103/physrevlett.110.168106
- M. Berr, T. Reichenbach, M. Schottenloher, and E. Frey, Zero-one survival behavior of cyclically competing species, Physical Review Letters, 102 (2009), 048102. https://doi.org/10.1103/PhysRevLett.102.048102
- A. Szolnoki and M. Perc, Zealots tame oscillations in the spatial rock-paper-scissors game, Physical Review E, 93 (2016), 062307. https://doi.org/10.1103/PhysRevE.93.062307
- A. Szolnoki, M. Mobilia, L. L. Jiang, B. Szczesny, A. M. Rucklidge, and M. Perc, Cyclic dominance in evolutionary games: a review Journal of The Royal Society Interface, 11 (2014), 20140735. https://doi.org/10.1098/rsif.2014.0735
- J. Park, Asymmetric interplay leads to robust coexistence by means of a global attractor in the spatial dynamics of cyclic competition Chaos, 28 (2018), 081103. https://doi.org/10.1063/1.5048468
- J. Park and B. Jang, Robust coexistence with alternative competition strategy in the spatial cyclic game of five species, Chaos, 29 (2019), 051105. https://doi.org/10.1063/1.5097003
- M. Mobilia, Oscillatory dynamics in rock-paper-scissors games with mutations, Journal of Theoretical Biology, 264 (2010), 1-10. https://doi.org/10.1016/j.jtbi.2010.01.008
- D. F. P. Toupo and S. H. Strogatz, Nonlinear dynamics of the rock-paper-scissors game with mutations, Physical Review E, 91 (2015), 052907. https://doi.org/10.1103/PhysRevE.91.052907
- J. Park, Biodiversity in the cyclic competition system of three species according to the emergence of mutant species, Chaos, 28 (2018), 053111. https://doi.org/10.1063/1.5021145
- J. Park, Nonlinear dynamics with Hopf bifurcations by targeted mutation in the system of rock-paper-scissors metaphor, Chaos, 29 (2019), 033102. https://doi.org/10.1063/1.5081966
- J. Park, Fitness-based mutation in the spatial rock-paper-scissors game: Shifting of critical mobility for extinction, EPL, 126 (2019), 38004. https://doi.org/10.1209/0295-5075/126/38004
- J. Park, Y. Do, Z.-G. Huang, and Y.-C. Lai, Persistent coexistence of cyclically competing species in spatially extended ecosystems, Chaos 23, 023128 (2013). https://doi.org/10.1063/1.4811298
- H. Shi, W.-X. Wang, R. Yang, and Y.-C. Lai, Basin of attraction for species extinction and coexistence in spatial rock-paper-scissors games, Physical Review E, 81 (2010), 030901(R).
- X. Ni, R. Yang, W.-X. Wang, Y.-C. Lai, and C. Grebogi, Basins of coexistence and extinction in spatially extended ecosystems of cyclically competing species, Chaos 20 (2010), 045116. https://doi.org/10.1063/1.3526993
- B. Kim and J. Park, Basins of distinct asymptotic states in the cyclically competing mobile five species game, Chaos 27, 103117 (2017). https://doi.org/10.1063/1.4998984
- R. Yang, W.-X. Wang, Y.-C. Lai, and C. Grebogi, Role of intraspecific competition in the coexistence of mobile populations in spatially extended ecosystems, Chaos, 20 (2010), 023113. https://doi.org/10.1063/1.3431629
- J. Park, Y. Do, B. Jang, and Y.-C. Lai, Emergence of unusual coexistence states in cyclic game systems, Scientific Reports, 7 (2017), 7465. https://doi.org/10.1038/s41598-017-07911-4
- J. Park, Balancedness among competitions for biodiversity in the cyclic structured three species system, Applied Mathematics and Computation, 320 (2018), 425-436. https://doi.org/10.1016/j.amc.2017.09.047
- J. Park, Y. Do, and B. Jang, Multistability in the cyclic competition system, Chaos, 28 (2018), 113110. https://doi.org/10.1063/1.5045366
- C. Hauert and O. Stenull, Simple Adaptive Strategy Wins the Prison's Dilemma, Journal of Theoretical Biology, 218 (2002), 261-272. https://doi.org/10.1006/jtbi.2002.3072
- B. J. McGill and J. S. Brown, Evolutionary Game Theory and Adaptive Dynamics of Continuous Traits, Annual Review of Ecology, Evolution, and Systematics, 38 (2007), 403-435. https://doi.org/10.1146/annurev.ecolsys.36.091704.175517
- R. Cressman and Y. Tao, The replicator equation and other game dynamics, Proceedings of the National Academy of Sciences of USA, 111 (2014), 10810-10817. https://doi.org/10.1073/pnas.1400823111
- P. D. Leenheer, A. Mohapatra, H. A. Ohms, D. A. Lytle, and J. M. Cushing, The puzzle of partial migration: Adaptive dynamics and evolutionary game theory perspectives, Journal of Theoretical Biology, 412 (2017), 172-185. https://doi.org/10.1016/j.jtbi.2016.10.011
- S. Redner, A Guide to First-Passage Processes, Cambridge University Press, Cambridge, 2001.
Cited by
- Behavioural movement strategies in cyclic models vol.11, pp.1, 2020, https://doi.org/10.1038/s41598-021-85590-y