DOI QR코드

DOI QR Code

Fabrication of VOx/Graphene Composite Using CO2 Laser Reduction and Atomic Layer Deposition and Its Electrochemical Performance

CO2 레이저 환원법과 원자층 증착법을 이용한 VOx/Graphene 복합체 제조 및 전기화학적 성능 평가

  • Park, Yong-Jin (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Kim, Jae-Hyun (Department of Nanomechanics, Korea Institute of Machinery & Materials (KIMM)) ;
  • Lee, Kyubock (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Lee, Seung-Mo (Department of Nanomechanics, Korea Institute of Machinery & Materials (KIMM))
  • 박용진 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 김재현 (한국기계연구원 나노응용역학연구실) ;
  • 이규복 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 이승모 (한국기계연구원 나노응용역학연구실)
  • Received : 2019.08.08
  • Accepted : 2019.10.22
  • Published : 2020.02.01

Abstract

Although the graphene is regarded as a promising material for the electrode of the supercapacitor, its electrochemical performance is still less enough to satisfy the current demand raised in real applications. Here, using a home laser engraver, firstly we performed the prompt and selective reduction of the graphene oxide to produce multilayered and highly porous graphene maintaining high electrical conductivity. Subsequently, the resulting graphene was conformally deposited with pseudocapacitive thin VOx using atomic layer deposition in order to enhance specific capacitance of graphene. We observed that various forms of VOx exist in the VOx/graphene hybrid through XPS analysis. The hybrid showed highly improved specific capacitance (~189 F/g) as compared to the graphene without VOx. We expect that our approach is accepted as one of the alternatives to produce the graphene-based electrode for various energy storage devices.

그래핀은 슈퍼커패시터의 전극소재로서 이상적인 물리적/화학적 물성을 지니고 있지만, 실제 장치에 적용하기에는 그 전기화학적 성능이 충분하지 못하다. 본 연구에서는 높은 전기 전도성 및 고다공성을 지닌 다층구조의 그래핀을 생성하기 위해, 산화 그래핀을 가정용 레이저 조각기를 사용하여 환원하였다. 제작된 그래핀의 비정전용량을 향상시키기 위하여, 원자층 단위 증착법을 이용하여 의사커패시터 거동을 나타내는 VOx를 균일하게 증착하였다. 이는 XPS 분석을 통해 VOx/그래핀 복합체에서 다양한 상의 VOx를 관찰하였다. VOx/그래핀 복합체는 VOx가 없는 그래핀(~50 F/g)과 비교할 때 상당히 향상된 비정전용량(~189 F/g)을 보였다. 본 연구에서 소개한 에너지 저장 장치에 사용되는 그래핀 기반 전극의 제작 방법은 여러가지 제작 방법의 대안책 중 하나로 사용될 것으로 기대된다.

Keywords

References

  1. Lukatskaya, M. R., Dunn, B. and Gogotsi, Y., "Multidimensional Materials and Device Architectures for Future Hybrid Energy Storage," Nat. Commun., 7, 12647(2016). https://doi.org/10.1038/ncomms12647
  2. Nunez, C. G., Manjakkal, L. and Dahiya, R., "Energy Autonomous Electronic Skin," Npj Flexible Electron., 3, 1(2019). https://doi.org/10.1038/s41528-018-0045-x
  3. Miller, J. R. and Simon, P., "Electrochemical Capacitors for Energy Management," Science, 321(5889), 651-652(2008). https://doi.org/10.1126/science.1158736
  4. Simon, P. and Gogotsi, Y., "Materials for Electrochemical Capacitors," Nat. Mater., 7, 845-854(2008). https://doi.org/10.1038/nmat2297
  5. Kotz, R. and Carlen, M., "Principles and Applications of Electrochemical Capacitors," Electrochim. Acta, 45(15-16), 2483-2498 (2000). https://doi.org/10.1016/S0013-4686(00)00354-6
  6. Yang, P. and Mai, W., "Flexible Solid-State Electrochemical Supercapacitors," Nano Energy, 8, 274-290(2014). https://doi.org/10.1016/j.nanoen.2014.05.022
  7. Ko, J. M. and Kim, K. M., "Supercapacitive Properties of RuO2 and Ru-Co Mixed Oxide Deposited on Single-Walled Carbon Nanotube," Korean Chem. Eng. Res., 47(1), 11-16(2009).
  8. Tagsin, P., Klangtakai, P., Harnchana, V., Amornkitbamrung, V., Pimanpang, S. and Kumnorkaew, P., "Enhanced Specific Capacitance of an Electrophoretic Deposited $MnO_2$-Carbon Nanotube Supercapacitor," J. Korean Phys. Soc., 71(12), 997-1005(2017). https://doi.org/10.3938/jkps.71.997
  9. Wang, N., Zhang, Y., Hu, T., Zhao, Y. and Meng, C., "Facile Hydrothermal Synthesis of Ultrahigh-Aspect-Ratio $V_2O_5$ Nanowires for High-Performance Supercapacitors," Curr. Appl Phys., 15(4), 493-498(2015). https://doi.org/10.1016/j.cap.2015.01.026
  10. Perera, S. D., Patel, B., Nijem, N., Roodenko, K., Seitz, O., Ferraris, J. P., Chabal, Y. J. and Balkus, K. J., "Vanadium Oxide Nanowire -Carbon Nanotube Binder-Free Flexible Electrodes for Supercapacitors," Adv. Energy Mater., 1(5), 936-945(2011). https://doi.org/10.1002/aenm.201100221
  11. Zhang, Y.-M., Bao, S.-X., Liu, T., Chen, T.-J. and Huang, J., "The Technology of Extracting Vanadium from Stone Coal in China: History, Current Status and Future Prospects," Hydrometallurgy, 109(1-2), 116-124(2011). https://doi.org/10.1016/j.hydromet.2011.06.002
  12. Li, M., Sun, G., Yin, P., Ruan, C. and Ai, K., "Controlling the Formation of Rodlike $V_2O_5$ Nanocrystals on Reduced Graphene Oxide for High-Performance Supercapacitors," ACS Appl. Mater. Interfaces, 5(21), 11462-11470(2013). https://doi.org/10.1021/am403739g
  13. Boukhalfa, S., Evanoff, K. and Yushin, G., "Atomic Layer Deposition of Vanadium Oxide on Carbon Nanotubes for High-Power Supercapacitor Electrodes," Energy Environ. Sci., 5, 6872-6879 (2012). https://doi.org/10.1039/c2ee21110f
  14. Lee, H. S., Park, J. W., Lee, Y. M., Ryou, M. H., Kim, K. M. and Ko, J. M., "Electrochemical Properties of Activated Carbon Supercapacitors Adopting Hydrophilic Silica and Hydrogel Electrolytes," Korean Chem. Eng. Res., 54(3), 293-298(2016). https://doi.org/10.9713/kcer.2016.54.3.293
  15. El-Kady, M. F., Ihns, M., Li, M., Hwang, J. Y., Mousavi, M. F., Chaney, L., Lech, A. T. and Kaner, R. B., "Engineering Three-Dimensional Hybrid Supercapacitors and Microsupercapacitors for High-Performance Integrated Energy Storage," Proc. Natl. Acad. Sci. U.S.A., 112(14), 4233-4238(2015). https://doi.org/10.1073/pnas.1420398112
  16. Augustyn. V., Simon. P. and Dunn, B., "Pseudocapacitive Oxide Materials for High-Rate Electrochemical Energy Storage," Energy Environ. Sci., 7, 1597-1614(2014). https://doi.org/10.1039/c3ee44164d
  17. Huang, X. W., Xie, Z. W., He, X. Q., Sun, H. Z., Tong, C. and Xie, D. M., "Electric Double Layer Capacitors Using Activated Carbon Prepared from Pyrolytic Treatment of Sugar as Their Electrodes," Synth. Met., 135-136, 235-236(2003). https://doi.org/10.1016/S0379-6779(02)00664-1
  18. Tung, V. C., Allen, M. J., Ynag, Y. and Kaner, R. B., "High-Throughput Solution Processing of Large-Scale Graphene," Nat. Nanotechnol., 4, 25-29(2009). https://doi.org/10.1038/nnano.2008.329
  19. Becerill, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z. and Chen, Y., "Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors," ACS Nano, 2(3), 463-470(2008). https://doi.org/10.1021/nn700375n
  20. Wang, X., Zhi, L. and Müllen, K., "Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells," Nano Lett., 8(1), 323-327(2008). https://doi.org/10.1021/nl072838r
  21. Matuyama, E., "Pyrolysis of Graphitic Acid," J. Phys. Chem., 58(3), 215-219(1954). https://doi.org/10.1021/j150513a006
  22. Furst, A., Berlo, R. C. and Hooton, S., "Hydrazine as a Reducing Agent for Organic Compounds (Catalytic Hydrazine Reductions)," Chem. Rev., 65(1), 51-68(1965). https://doi.org/10.1021/cr60233a002
  23. Si, Y. and Samulski, E. T., "Synthesis of Water Soluble Graphene," Nano Lett., 8(6), 1679-1682(2008). https://doi.org/10.1021/nl080604h
  24. Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H. and Yao, J., "Facile Synthesis and Characterization of Graphene Nanosheets," J. Phys. Chem. C, 112(22), 8192-8195(2008). https://doi.org/10.1021/jp710931h
  25. Kang, K.-Y., Choi, M. G., Lee, Y.-G. and Kim, K. M., "Phase Change of Nanorod-Clustered $MnO_2$ by Hydrothermal Reaction Conditions and the Lithium-Ion Battery Cathode Properties of $LiMn_2O_4$ Prepared from the $MnO_2$," Korean Chem. Eng. Res., 49(5), 541-547(2011). https://doi.org/10.9713/kcer.2011.49.5.541
  26. Kim, D.-H., Song, K.-C., Shim, K.-H. and Kim, J.-H., "Preparation of NiO Electrodes for Supercapacitor by the Sol-Gel Process," Korean Chem. Eng. Res., 41(2), 238-242(2003).
  27. George, S. M., "Atomic Layer Deposition: An Overview," Chem. Rev., 110(1), 111-131(2010). https://doi.org/10.1021/cr900056b
  28. Lee, S.-M., Park, Y.-J. and Kim, J.-H., "Laser Reduction of Zn-Infiltrated Multilayered Graphene Oxide as Electrode Materials for Supercapacitors," ACS Appl. Nano Mater., 2(6), 3711-3717(2019). https://doi.org/10.1021/acsanm.9b00618
  29. Bhattacharjya, D., Kim, C.-H., Kim, J.-H., You, I.-K., In, J. B. and Lee, S.-M., "Fast and Controllable Reduction of Graphene Oxide by Low-Cost $CO_2$ Laser for Supercapacitor Application," Appl. Surf. Sci., 462, 353-361(2018). https://doi.org/10.1016/j.apsusc.2018.08.089
  30. Tran, T. X., Choi, H., Che, C. H., Sul, J. H., Kim, I. G., Lee, S.-M., Kim, J.-H. and In, J. B., "Laser-Induced Reduction of Graphene Oxide by Intensity-Modulated Line Beam for Supercapacitor Applications," ACS Appl. Mater. Interfaces, 10(46), 39777-39784 (2018). https://doi.org/10.1021/acsami.8b14678
  31. Johra, F. T., Lee, J.-W. and Jung, W.-G., "Facile and Safe Graphene Preparation on Solution Based Platform," J. Ind. Eng. Chem., 20(5), 2883-2887(2014). https://doi.org/10.1016/j.jiec.2013.11.022
  32. Wu, N., She, X., Yang, D., Wu, X., Su, F. and Chen, Y., "Synthesis of Network Reduced Graphene Oxide in Polystyrene Matrix by a Two-Step Reduction Method for Superior Conductivity of the Composite," J. Mater. Chem., 22(33), 17254-17261(2012). https://doi.org/10.1039/c2jm33114d
  33. Lee, H. Y. and Goodenough, J. B., "Ideal Supercapacitor Behavior of Amorphous $V_2O_5{\cdot}nH_2O $ in Potassium Chloride (KCl) Aqueous Solution," J. Solid State Chem., 148(1), 81-84(1999). https://doi.org/10.1006/jssc.1999.8367
  34. Mattelaer, F., Geryl, K., Rampelberg, G., Dendooven, J. and Detavernier, C., "Amorphous and Crystalline Vanadium Oxides as High-Energy and High-Power Cathodes for Three-Dimensional Thin-Film Lithium Ion Batteries," ACS Appl. Mater. Interfaces, 9, 13121-13131(2017). https://doi.org/10.1021/acsami.6b16473
  35. Uchaker, E., Zheng, Y. Z., Li, S., Candelaria, S. L., Hu, S. and Cao, G. Z., "Better than Crystalline: Amorphous Vanadium Oxide for Sodium-Ion Batteries," J. Mater. Chem. A, 2(43), 18208-18214(2014). https://doi.org/10.1039/C4TA03788J
  36. Wang, G., Zhang, L. and Zhang, J., "A Review of Electrode Materials for Electrochemical Supercapacitors," Chem. Soc. Rev., 41, 797-828(2012). https://doi.org/10.1039/C1CS15060J
  37. Wang, W., Jiang, B., Hua, L., Lin, Z., Hou, J. and Jiao, S., "Single Crystalline $VO_2$ Nanosheets: A Cathode Material for Sodium- Ion Batteries with High Rate Cycling Performance," J. Power Sources, 250, 181-187(2014). https://doi.org/10.1016/j.jpowsour.2013.11.016
  38. Zhu, K., Zhang, C., Guo, S., Yu, H., Liao, K., Chen, G., Wei, Y. and Zhou, H., "Sponge-Like Cathode Material Self-Assembled from Two-Dimensional $V_2O_5$ Nanosheets for Sodium-Ion Batteries," ChemElectroChem, 2(11), 1660-1664(2015). https://doi.org/10.1002/celc.201500240
  39. Sun, W., Zheng, R. and Chen, X., "Symmetric Redox Supercapacitor Based on Micro-Fabrication with Three-Dimensional Polypyrrole Electrodes," J. Power Sources, 195(20), 7120-7125(2010). https://doi.org/10.1016/j.jpowsour.2010.05.012
  40. Cui, L., Li, J. and Zhang, X.-G., "Preparation and Properties of $Co_3O_4$ Nanorods as Supercapacitor Material," J. Appl. Electrochem., 39, 1871-1876(2009). https://doi.org/10.1007/s10800-009-9891-5
  41. Conway, B. E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publisher, New York(1999).
  42. Bard, A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., Wiley, New York(2000).
  43. Sun, X., Xie, M., Travis, J. J., Wang, G., Sun, H., Lian, J. and George, S. M., "Pseudocapacitance of Amorphous $TiO_2$ Thin Films Anchored to Graphene and Carbon Nanotubes Using Atomic Layer Deposition," J. Phys. Chem. C, 117, 22497-22508(2013). https://doi.org/10.1021/jp4066955
  44. Zang, X., Shen, C., Kao, E., Warren, R., Zhang, R., Teh, K. S., Zhong, J., Wei, M., Li, B., Chu, Y., Sanghadasa, M., Schwartzberg, A. and Lin, L., "Titanium Disulfide Coated Carbon Nanotube Hybrid Electrodes Enable High Energy Density Symmetric Pseudocapacitors," Adv. Mater., 30, 1704754(2017). https://doi.org/10.1002/adma.201704754
  45. Lu, T., Zhang, Y., Li, H., Pan, L., Li, Y. and Sun, Z., "Electrochemical Behaviors of Graphene-ZnO and Graphene-$SnO_2$ Composite Films for Supercapacitors," Electrochim. Acta, 55, 4170-4173(2010). https://doi.org/10.1016/j.electacta.2010.02.095
  46. Vinoth, V., Wu, J. J., Asiri, A. M., Lana-Villarreal, T., Bonete, P. and Anandan, S., "$SnO_2$-Decorated Multiwalled Carbon Nanotubes and Vulcan Carbon through a Sonochemical Approach for Supercapacitor Applications," Ultrason. Sonochem., 29, 205-212 (2016). https://doi.org/10.1016/j.ultsonch.2015.09.013
  47. Sassin, M. B., Mansour, A. N., Pettigrew, K. A., Rolison, D. R. and Long, J. W., "Electroless Deposition of Conformal Nanoscale Iron Oxide on Carbon Nanoarchitectures for Electrochemical Charge Storage," ACS Nano, 4, 4505-4514(2010). https://doi.org/10.1021/nn100572a