DOI QR코드

DOI QR Code

Practical Concerns in Enforcing Ethereum Smart Contracts as a Rewarding Platform in Decentralized Learning

연합학습의 인센티브 플랫폼으로써 이더리움 스마트 컨트랙트를 시행하는 경우의 실무적 고려사항

  • ;
  • ;
  • 장설아 (부경대학교 인공지능융합학과) ;
  • 이경현 (부경대학교 IT융합응용공학과)
  • Received : 2020.08.04
  • Accepted : 2020.09.06
  • Published : 2020.12.31

Abstract

Decentralized approaches are extensively researched by academia and industry in order to cover up the flaws of existing systems in terms of data privacy. Blockchain and decentralized learning are prominent representatives of a deconcentrated approach. Blockchain is secure by design since the data record is irrevocable, tamper-resistant, consensus-based decision making, and inexpensive of overall transactions. On the other hand, decentralized learning empowers a number of devices collectively in improving a deep learning model without exposing the dataset publicly. To motivate participants to use their resources in building models, a decent and proportional incentive system is a necessity. A centralized incentive mechanism is likely inconvenient to be adopted in decentralized learning since it relies on the middleman that still suffers from bottleneck issues. Therefore, we design an incentive model for decentralized learning applications by leveraging the Ethereum smart contract. The simulation results satisfy the design goals. We also outline the concerns in implementing the presented scheme for sensitive data regarding privacy and data leakage.

탈중앙화 접근법은 기존 시스템의 데이터 프라이버시 결함을 보완하기 위해 산·학계에서 폭넓게 연구되고 있다. 블록체인은 기록된 데이터는 위조할 수 없으며 합의를 기반으로 의사결정을 이루고 전반적인 거래의 비용은 저렴한 특징을 가지고 있다. 연합학습은 데이터 집합을 공개적으로 노출하지 않고 다수의 장치를 집합적으로 사용 함으로서 딥러닝 모델을 개선할 수 있게 한다. 모델 구축을 위해서는 자원을 사용하도록 참여자들의 동기 부여를 위한 적절하고 참여 비율에 합당한 인센티브 제도가 필수적이다. 그러나 중앙집중화된 인센티브 메커니즘은 중간 계층에 의존하고 여전히 병목현상을 유발하기 때문에 연합학습에 적용하기에는 어려움이 있다. 따라서, 우리는 이더리움 스마트컨트랙트를 활용하여 연합학습 어플리케이션을 위한 인센티브 모델을 제안한다. 구현 결과는 설계 목표를 충족하였고, 마지막 절에서 연합학습에서 프라이버시 및 데이터 유출과 관련된 민감 데이터에 대한 본 구현을 실행할 때 발생할 수 있는 사항들을 설명한다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2018R1D1A1B07048944) and partially was supported by Pukyong National University Research Fund in 2019.

References

  1. J. Konecny, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and D. Bacon, "Federated learning: Strategies for improving communication efficiency," pp.1-10, 2016, [Online]. Available: http://arxiv.org/abs/1610.05492.
  2. S. Lugan, P. Desbordes, E. Brion, L. X. Ramos Tormo, A. Legay, and B. Macq, "Secure architectures implementing trusted coalitions for blockchained distributed learning (TCLearn)," IEEE Access, Vol.7, pp.181789-181799, 2019. https://doi.org/10.1109/ACCESS.2019.2959220
  3. Hard, Andrew, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Francoise Beaufays, Sean Augenstein, Hubert Eichner, Chloe Kiddon, and Daniel Ramage, "Federated learning for mobile keyboard prediction," arXiv preprint arXiv:1811.03604, 2018.
  4. Bonawitz, Keith, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth, "Practical secure aggregation for privacy-preserving machine learning," In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp.1175-1191, 2017.
  5. Yang, Qiang, Yang Liu, Tianjian Chen, and Yongxin Tong, "Federated machine learning: Concept and applications," ACM Transactions on Intelligent Systems and Technology (TIST), Vol.10, No.2, pp.1-19, 2019.
  6. J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang and W. Luo, "Deepchain: Auditable and privacy- preserving deep learning with blockchain-based incentive," IEEE Transactions on Dependable and Secure Computing, 2019.
  7. R. Jurca and B. Faltings, "An incentive compatible reputation mechanism," 2003.
  8. S. Zhong, J. Chen, and Y. R. Yang, "Sprite: A simple, cheat-proof, credit-based system for mobile ad-hoc networks," 2003.
  9. B. Bin Chen and M. C. Chan, "MobiCent: A credit-based incentive system for disruption tolerant network," 2010.
  10. U. Shevade, H. H. Song, L. Qiu, and Y. Zhang, "Incentive-aware routing in DTNs," 2008.
  11. A. Singh, R. M. Parizi, Q. Zhang, K. K. R. Choo, and A. Dehghantanha, "Blockchain smart contracts formalization: Approaches and challenges to address vulnerabilities," Computers and Security, 2020.
  12. Rahmadika, Sandi, and Kyung-Hyune Rhee, "Toward privacy-preserving shared storage in untrusted blockchain p2p networks," 2019 Wireless Communications and Mobile Computing, pp.1-13, 2019.
  13. A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, "Hawk: The blockchain model of cryptography and privacy-preserving smart contracts," 2016.
  14. M. Vukolic, "Rethinking permissioned blockchains," 2017.
  15. Lim, Wei Yang Bryan, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-Chang Liang, Qiang Yang, Dusit Niyato, and Chunyan Miao, "Federated learning in mobile edge networks: A comprehensive survey," IEEE Communications Surveys & Tutorials, 2020.
  16. Wang, Shiqiang, Tiffany Tuor, Theodoros Salonidis, Kin K. Leung, Christian Makaya, Ting He, and Kevin Chan, "Adaptive federated learning in resource constrained edge computing systems," IEEE Journal on Selected Areas in Communications, Vol.37, No.6, pp.1205-1221, 2019. https://doi.org/10.1109/JSAC.2019.2904348
  17. Dean, Jeffrey, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc'aurelio Ranzato et al., "Large scale distributed deep networks," Advances in Neural Information Processing Systems, Vol.25, pp.1223-1231, 2012.
  18. J. Zhao, Y. Chen, and W. Zhang, "Differential privacy preservation in deep learning: Challenges, opportunities and solutions," IEEE Access, 2019.
  19. Lane, Nicholas D., Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei Jiao, Lorena Qendro, and Fahim Kawsar, "Deepx: A software accelerator for low-power deep learning inference on mobile devices," In 2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pp.1-12. IEEE, 2016.
  20. J. Wang, X. Zhu, J. Zhang, B. Cao, W. Bao, and P. S. Yu, "Not just privacy: Improving performance of private deep learning in mobile cloud," 2018.
  21. Rahmadika, Sandi, and Kyung-Hyune Rhee, "Blockchain technology for providing an architecture model of decentralized personal health information," International Journal of Engineering Business Management, Vol.10, pp.11-12, 2018.
  22. Deng, Li, "The mnist database of handwritten digit images for machine learning research [best of the web]," IEEE Signal Processing Magazine, Vol.29, No.6, pp.141-142, 2012. https://doi.org/10.1109/MSP.2012.2211477
  23. S. F. Sun, M. H. Au, J. K. Liu, and T. H. Yuen, "RingCT 2.0: A compact accumulator-based (linkable ring signature) protocol for blockchain cryptocurrency Monero," 2017.
  24. Sasson, Eli Ben, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars Virza, "Zerocash: Decentralized anonymous payments from bitcoin," In 2014 IEEE Symposium on Security and Privacy, pp.459-474. IEEE, 2014.
  25. Rivest, Ronald L., Adi Shamir, and Yael Tauman, "How to leak a secret," In International Conference on the Theory and Application of Cryptology and Information Security, pp.552-565. Springer, Berlin, Heidelberg, 2001.
  26. N. Van Saberhagen, "CryptoNote v 2.0," Self-published, pp. 1-20, 2013.