DOI QR코드

DOI QR Code

Structural Analysis of Damping Hinge for Built-in Side-by-Side Refrigerator and Design Improvement of Bracket Pin to Reduce Stress Concentration

빌트인 양문형 냉장고 댐핑힌지의 구조해석 및 브래킷핀의 응력집중 저감을 위한 설계개선

  • Lee, Boo-Youn (Dept. of Mechanical & Automotive Engineering, Keimyung University)
  • 이부윤 (계명대학교 기계자동차공학전공)
  • Received : 2019.09.05
  • Accepted : 2020.01.03
  • Published : 2020.01.31

Abstract

This study performed stress and fatigue life analysis of the damping hinge of a built-in side-by-side refrigerator that occurs when the door is opened to the maximum angle. An analysis of the initial design showed that stress concentration occurred at the corner between the cylinder and upper disk of the bracket pin, and the maximum stress exceeded the yield strength. The maximum stress location and the calculated fatigue life were consistent with the door opening-and-closing endurance test results for a prototype. Three cases of design improvement for the bracket pin were derived with the aim of reducing the stress concentration that appeared in the initial design. An analysis of the cases showed that inserting a fillet between the disk and the cylinder of the bracket pin reduced the stress and increased the fatigue life. Moreover, changing the disk into two steps was more favorable. In conclusion, the best design improvement was the case that the disk was changed to two steps and the fillet with a large radius was inserted. In that case, the stress was the smallest and the fatigue life was infinite.

본 연구는 빌트인 양문형 냉장고의 도어를 최대개방각도로 열었을 때 발생하는 댐핑힌지의 응력해석과 피로수명 해석을 다룬다. 댐핑힌지의 초기설계안에 대하여 유한요소해석을 수행한 결과, 브래킷핀에서 상부원판과 원통이 직각을 이루는 기하학적 불연속 부위에서 국부적 응력집중이 발생하였고, 최대 von Mises 등가응력이 재료의 항복강도를 초과하였다. 이 최대응력 발생 위치는 시작품을 제작하여 수행한 도어개폐 내구시험 시에 파손된 브래킷핀의 부위와 일치하였으며, 응력해석 결과로부터 계산된 피로수명도 내구시험 결과와 정합성이 있는 것으로 나타났다. 브래킷핀의 초기설계 안에서 나타난 응력집중을 완화하기 위하여 브래킷핀의 형상을 변경하는 3가지 설계개선안을 도출하고 해석을 수행하여 안전성을 평가하였다. 설계개선안의 해석결과, 브래킷핀의 원판과 원통 사이에 필렛을 삽입하면 응력집중을 저감시키고 피로수명은 증가하는 것으로 나타났다. 또한 브래킷핀의 원판을 2단으로 변경하면 응력집중을 저감시키고 피로수명은 증가하는 것으로 나타났다. 결론적으로 가장 우수한 설계개선안은 브래킷핀의 원판을 2단으로 변경하고 반경이 큰 필렛을 삽입한 경우로서, 응력집중이 가장 작고 피로수명이 무한대인 것으로 판단된다.

Keywords

References

  1. G. C. Sin, S. W. Che, "A Study on the Door Height Difference of the SBS Refrigerator," Proc. of Autumn Conference of KSME(A), pp.528-531, 2004.
  2. G. W. Kang, A Study and Analysis for the Improvement of Door Height Difference of the Side-by-Side Refrigerator, Master's thesis, Pusan National University, Busan, Korea, 2008.
  3. M. S. Lee, A Study of Optimization of the Load Supporting Structure in the Side-by-Side Refrigerator, Master's thesis, Pusan National University, Busan, Korea, 2008.
  4. L. Weng, J. D. Yun, Y. H. Jung, "Development of the Auto Leveling Mechanism for Side-by-Side Refrigerator Doors," J. of KAIS, Vol.13, pp.3165-3174, 2012. DOI: https://doi.org/10.5762/KAIS.2012.13.7.3165
  5. M. J. Jang, A Study and Analysis for the Improvement of Door Height Difference of the Side-by-Side Refrigerator, Master's thesis, Pusan National University, Busan, Korea, 2010.
  6. J. H. Kim, A Study Regarding Supporting Structure of Refrigerator to Minimize a DHD between Each Door at the Unleveled Floor Condition, Master's thesis, Pusan National University, Busan, Korea, 2015.
  7. B. Y. Lee, "Structural Analysis of Cabinet of Built-in Side-by-Side Refrigerator and Evaluation of Door Height Difference and Door Flatness Difference," J. of KSMPE, Vol.17, No.2, pp.30-36, 2018. DOI: https://doi.org/10.14775/ksmpe.2018.17.2.030
  8. B. Y. Lee, “Analysis of Door Height Difference and Door Flatness Difference of Built-in Side-by-Side Refrigerator Using Cabinet-Door Integrated Model,” J. of KSMPE, Vol. 17, No. 5, pp. 76-83, 2018. DOI: https://doi.org/10.14775/ksmpe.2018.17.5.076
  9. B. Y. Lee, "Structural Analysis of Built-in Side-by-Side Refrigerator with Ice Dispenser and Home Bar and Evaluation of Door Differences and Gasket Gap," J. of KAIS, Vol.19, No.9, pp.465-473, 2018. DOI: https://doi.org/10.5762/KAIS.2018.19.9.465
  10. B. Y. Lee, "A Study on Evaluation and Improvement of Sealing Performance of Duct Cap Assembly for Ice Dispenser By Nonlinear Contact Problem Analysis," J. of KSMPE, Vol.17, No.2, pp.37-46, 2018. DOI: https://doi.org/10.14775/ksmpe.2018.17.2.037
  11. B. Y. Lee, "A Study on Analysis and Design Improvement of Opening Angle of Duct Cap of Ice Dispenser for Refrigerator," J. of KAIS, Vol.19, No.5, pp.672-680, 2018. DOI: https://doi.org/10.5762/KAIS.2018.19.5.672
  12. B. Y. Lee, "Stress Analysis and Design Improvement to Prevent Failure of Damping Hinge for Built-in Refrigerator," J. of KSMPE, Submitted, 2019.
  13. ANSYS User's Manual, Revision 11.0, ANSYS Inc., 2007.
  14. JIS Handbook 1-2: Steel II, Japanese Standards Association, 2000.
  15. J. E. Shigley, Mechanical Engineering Design, 3rd Ed., International Student Edition, McGraw-Hill Kogakusha, Ltd., Tokyo, 1977, pp.178-194.