DOI QR코드

DOI QR Code

Learning data preprocessing technique for improving indoor positioning performance based on machine learning

기계학습 기반의 실내 측위 성능 향상을 위한 학습 데이터 전처리 기법

  • Kim, Dae-Jin (Institute for Image & Cultural Contents, Dongguk University) ;
  • Hwang, Chi-Gon (Dept. of Computer Engineering, IIT, Kwangwoon University) ;
  • Yoon, Chang-Pyo (Dept. Of Computer & Mobile Convergence, GyeongGi University of Science and Technology)
  • Received : 2020.10.13
  • Accepted : 2020.10.24
  • Published : 2020.11.30

Abstract

Recently, indoor location recognition technology using Wi-Fi fingerprints has been applied and operated in various industrial fields and public services. Along with the interest in machine learning technology, location recognition technology based on machine learning using wireless signal data around a terminal is rapidly developing. At this time, in the process of collecting radio signal data required for machine learning, the accuracy of location recognition is lowered due to distorted or unsuitable data for learning. In addition, when location recognition is performed based on data collected at a specific location, a problem occurs in location recognition at surrounding locations that are not included in the learning. In this paper, we propose a learning data preprocessing technique to obtain an improved position recognition result through the preprocessing of the collected learning data.

최근 Wi-Fi 전파 지문을 이용한 실내 위치 인식 기술이 다양한 산업 분야 및 공공 서비스에서 적용되어 운영되고 있다. 기계학습 기술의 관심과 함께 단말 주변의 무선 신호 데이터를 사용한 기계학습 기반의 위치 인식 기술이 빠르게 발전하고 있다. 이때 기계학습에 필요한 무선 신호 데이터의 수집 과정에서 왜곡되거나 학습에 적합하지 않은 데이터가 포함되어 위치 인식의 정확도가 낮아지는 결과가 발생한다. 또한 특정 위치에서 수집된 데이터를 기반의 위치 인식을 수행하는 경우 학습에 포함되지 않은 주변 위치에서의 위치 인식에 문제가 발생한다. 본 논문에서는 수집된 학습 데이터의 전처리 과정을 통해 향상된 위치 인식 결과를 얻기 위한 학습 데이터 전처리 기법을 제안한다.

Keywords

References

  1. C. P. Yoon and C. G Hwang, "Efficient indoor positioning systems for indoor location-based service provider," KIICE, vol.19, pp. 1368-1373, Jun. 2015.
  2. R. Sheikhpour, M. A. Sarram, S. Gharaghani and M. A. Z. Chahooki, "A Survey on semi-supervised feature selection methods," Pattern Recognition, vol. 64, pp. 141-158, Apr. 2017. https://doi.org/10.1016/j.patcog.2016.11.003
  3. A. M. Abd and S. M. Abd, "Modelling the strength of lightweight foamed concrete using support vector machine (SVM)," Case studies in construction materials 6, pp. 8-15, 2017. https://doi.org/10.1016/j.cscm.2016.11.002
  4. I. Ahmad, M. Basheri, M. J. Iqbal, and A. Rahim, "Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection." IEEE Access 6, pp. 33789-33795, 2018. https://doi.org/10.1109/access.2018.2841987
  5. N. Papernot and M. Patrick "Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning." arXiv preprint arXiv:1803.04765, pp. 1-18, 2018.
  6. J. Behmann, K. Hendriksen, U. Muller, W. Buscher, and L. Plumer, "Support Vector machine and duration-aware conditional random field for identification of spatio-temporal activity patterns by combined indoor positioning and heart rate sensors," Geoinformatica, vol. 20, no. 4, pp. 693-714, 2016. https://doi.org/10.1007/s10707-016-0260-3
  7. D. Kim, S. H. Park, and H.K. Jung, "Fingerprint-Based Indoor Logistics Location Tracking System," KIICE, vol.24, no.7, pp. 898-903, 2020.
  8. C. P. Yoon, I. K. Lee, and C. G. Hwang, "The iBeacon Signal Optimization Methods for Improving the Reliability of Indoor Positioning Systems," Journal of Engineering and Applied Sciences, vol. 12, no. 10, pp. 2692-2696, 2017.
  9. E. S. Lohan, J. Torres-Sospedra, H. Leppakoski, P. Richter, Z. Peng, and J. Huerta, "Wi-Fi crowdsourced fingerprinting dataset for indoor positioning," Data, 2017.
  10. G.James, D.Witten, T.Hastie, and R.Tibshirani, "An introduction to statistical learning: with applications in R," Spinger, 2013.
  11. A.Criminisi, J.Shotton, and E.Konukoglu, "Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning," Foundations and Trends in Computer Graphics and Vision 7.2-3, pp. 81-227, 2012. https://doi.org/10.1561/0600000035
  12. L.Rokach and O.Maimon, "Top-down induction of decision trees classifiers-a survey," IEEE Transactions on Systems, Man, and Cybernetics, Part C(Applications and Reviews), vol. 35, no. 4, pp. 476-487, 2005. https://doi.org/10.1109/TSMCC.2004.843247