DOI QR코드

DOI QR Code

저고도 기상 레이다에서의 도플러 스펙트럼 추정

Doppler Spectrum Estimation in a Low Elevation Weather Radar

  • Lee, Jonggil (Department of Information and Telecommunication Engineering, Incheon National University)
  • 투고 : 2020.08.08
  • 심사 : 2020.08.16
  • 발행 : 2020.11.30

초록

기상 레이다 시스템은 일반적으로 강우 및 풍속 등과 관련된 기상 현상을 나타낸다. 이러한 시스템은 대부분의 경우 장거리용이며 비교적 높은 고도를 지향하고 있어 넓은 지역에서의 전체적인 기상 현상을 파악하는 목적으로는 매우 유용하다. 그러나 최근에 와서 국지적인 폭우나 또는 돌풍 등에 의한 재난현상이 빈번히 발생되고 있기 때문에 이러한 기상이변 현상의 탐지가 매우 중요한 문제이다. 국지적인 기상 이변 탐지목적의 기상 레이다는 저고도 탐지 및 급변하는 국지적인 기상상황의 빠른 탐지가 필요하다. 이러한 운용환경에서는 상대적으로 지표면 클러터가 큰 영향을 미치며 안테나의 신호 획득시간도 매우 짧아진다. 따라서 기존의 도플러 스펙트럼 추정방법에 심각한 문제가 발생할 수 있다. 본 논문에서는 이러한 문제점을 해결하기 위하여 AR(autoregressive) 도플러 스펙트럼 추정 방법들을 적용하고 결과들을 고찰하였다. 적용된 방법들을 이용하면 기존의 FFT(Fast Fourier Transform) 방법에 비하여 향상된 도플러 스펙트럼 추정이 가능함을 보였다.

A weather radar system generally shows the weather phenomena related with rainfall and wind velocity. These systems are usually very helpful to monitor the relatively high altitude weather situation for the wide and long range area. However, since the weather hazards due to the strong hail and heavy rainfall occurring locally are observed frequently in recent days, it is important to detect these wether phenomena. For this purpose, it is necessary to detect the fast varying low altitude weather conditions. In this environment, the effect of surface clutter is more evident and the antenna dwell time is much shorter. Therefore, the conventional Doppler spectrum estimation method may cause serious problems. In this paper, the AR(autoregressive) Doppler spectrum estimation methods were applied to solve these problems and the results were analyzed. Applied methods show that improved Doppler spectra can be obtained comparing with the conventional FFT(Fast Fourier Transform) method.

키워드

참고문헌

  1. V. Chandrasekar, H. Chen, and B. Philips, "DFW urban radar network observations of floods, tornadoes and hail storms," in Proceedings of 2018 IEEE Radar Conference, Oklahoma City: OK, pp. 0765-0770, 2018.
  2. B. Philips, T. Ryan, V. Chandrasekar, E. Lyons, T. Bradshaw, M. Fox, F. Junyent, and A. Bajaj, "Tracking tornados down streets: Using casa radars in real time severe weather warning operations in north central texas," in Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth: TX, pp. 5973-5976, 2017.
  3. Q. Cao, M. Knight, M. Frech, and T. Mammen, "Measurement uncertainty and system assessment of weather radar network in Germany," in Proceedings of 2016 IEEE Radar Conference, Philadelphia: PA, pp. 1-5, 2016.
  4. J. Li, X. Wang, T. Wang, J. Liu, H. Gao, and V. Chandrasekar, "Circulation retrieval of wake vortex under rainy condition with a vertically pointing radar," IEEE Transactions on Aerospace and Electronic Systems, vol. 53, no. 4, pp. 1893-1906, Aug. 2017. https://doi.org/10.1109/TAES.2017.2675198
  5. C. D. Curtis, M. Yeary, and J. L. Lake, "Adaptive nullforming to mitigate ground clutter on the national weather radar testbed phased array radar," IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 3, pp. 1282-1291, Mar. 2016. https://doi.org/10.1109/TGRS.2015.2477300
  6. D. S. Zrnic, "Estimation of spectral moments for weather echoes," IEEE Transactions on Geoscience Electronics, vol. 17, no. 4, pp. 113-128, Oct. 1979. https://doi.org/10.1109/TGE.1979.294638
  7. S. Haykin and S. Kesler, "The complex form of the maximum entropy method for spectral estimation," Proceedings of the IEEE, vol. 64, no. 5, pp. 822-823, May. 1976. https://doi.org/10.1109/PROC.1976.10221
  8. T. Thorvaldsen, "A comparison of the least squares method and the Burg method for autoregressive spectral analysis," IEEE Transactions on Antennas and Propagation, vol. 29, no. 4, pp. 675-679, Jul. 1981. https://doi.org/10.1109/TAP.1981.1142638
  9. J. Lee, "The efficient clutter simulation method for airborne radars," Journal of the Korea Institute of Information and Communication Engineering, vol. 23, no. 9, pp. 1123-1130, Sep. 2019.