DOI QR코드

DOI QR Code

Context-awareness User Analysis based on Clustering Algorithm

클러스터링 알고리즘기반의 상황인식 사용자 분석

  • Lee, Kang-whan (Department of Computer Science Engineering, ICT Convergence, Interdisciplinary Program in Creative Engineering, Korea University of Technology and Education)
  • Received : 2020.04.17
  • Accepted : 2020.05.01
  • Published : 2020.07.31

Abstract

In this paper, we propose a clustered algorithm that possible more efficient user distinction within clustering using context-aware attribute information. In typically, the data provided to classify interrelationships within cluster information in the process of clustering data will be as a degrade factor if new or newly processing information is treated as contaminated information in comparative information. In this paper, we have developed a clustering algorithm that can extract user's recognition information to solve this problem in using K-means algorithm. The proposed algorithm analyzes the user's clustering attributed parameters from user clusters using accumulated information and clustering according to their attributes. The results of the simulation with the proposed algorithm showed that the user management system was more adaptable in terms of classifying and maintaining multiple users in clusters.

본 논문에서는 상황인식 속성정보를 이용하여 클러스터링내에서 보다 효율적인 사용자 구분이 가능한 군집적 알고리즘을 제안한다. 일반적으로 클러스터링 데이터를 처리함에 있어 군집 정보내에서 상호관계를 분류하기 위해 제공되는 데이터는 신규 또는 새롭게 입력되는 정보가 비교정보에서 오염된 정보로 처리될 경우, 기존 분류된 군집으로부터 벗어나게 되어 군집성을 저하시키는 요인으로 작용하게 된다. 본 논문에서는 이러한 문제를 해결하기 위해 K-means알고리즘을 이용함에 있어 사용자 인식 정보 추출이 가능한 사용자 군집 분석 방식을 제안하고자 한다. 제안하는 알고리즘은 시스템 내 누적된 정보를 이용하여 자율적인 사용자 군집 특징을 분석하고, 이를 통하여 사용자의 속성간에 따른 클러스터를 구성해 사용자를 구분하게 된다. 제안한 알고리즘은 적용한 모의실험 결과를 통해 다중 사용자를 군집단위로 분류하고 유지하는 측면에서 사용자 관리 시스템이 보다 향상된 적응성을 보여주었다.

Keywords

References

  1. G. Adami, P. Avesani, and D. Sona, "Clustering documents in a web directory," Proceedings of the 5th ACM international workshop on Web information and data management, vol.54, Issue 3, pp.66-73, Sep. 2015.
  2. E. Min, X. Guo, Q. Liu, G. Zhang, J. Cui, and J. Long. "A survey of clustering with deep learning: From the perspective of network architecture," IEEE Access, vol.6, 39501-39514, July 2018. https://doi.org/10.1109/access.2018.2855437
  3. J. A. Hartigan and M. A. Wong, "Algorithm AS 136: A K-Means Clustering Algorithm," Journal of the Royal Statistical Society. Series C (Applied Statistics), vol. 28, no. 1, pp. 100-108, Jan. 2012.
  4. A. Likas and N. Vlassis and J.Verbeek, "The global k-means clustering algorithm," Department of Computer Science, University of Ioannina, 45110 Joannina, Greece, vol. 36, no.2, pp 451-461, Feb. 2018. https://doi.org/10.1016/S0031-3203(02)00060-2
  5. L. Xue and W. Luan, "Improved K-means Algorithm in User Behavior Analysis," Ninth International Conference on Frontier of Computer Science and Technology, IEEE, pp.339-342, 2015.
  6. H. Xiong, J. Wu, and J. Chen, "K-means Clustering versus Validation Measures: A Data Distribution Perspective," IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 39, Issue 2, pp.779-784, 2009.
  7. T. SHEIKH and S. AHRAWAL, "Enhanced K-means based Facial expressions recognition system," CSE Department CSIT Durg, Assistant Professor CSE Department CSIT Durg, pp. 39-41, May-2018.
  8. T. Obichi and Y. Okaie, T. Nakano, T. Hara, S. Nishio, "Inbody Mobile Bionanosensor Networks Through Nondiffusion-based Molecular Communication," IEEE ICC (International Conference on Communications) 2015, pp. 1078-1084, 2015.
  9. D.L. Davies and D.W. Bouldin, "A Cluster Separation Measure," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.1, pp.224-227, 1979.
  10. J.C. Dunn, "A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters," J. Cybernetics, vol. 3, pp. 32- 57, 1973. https://doi.org/10.1080/01969727308546046
  11. Size of Korea.[Internet]. Available: http://sizekorea.kats.go.kr.