DOI QR코드

DOI QR Code

Design of Arrhythmia Classification System Based on 1-D Convolutional Neural Networks

1차원 합성곱 신경망에 기반한 부정맥 분류 시스템의 설계

  • Received : 2019.11.11
  • Accepted : 2019.12.02
  • Published : 2020.01.31

Abstract

Recently, many researches have been actively to diagnose symptoms of heart disease using ECG signal, which is an electrical signal measuring heart status. In particular, the electrocardiogram signal can be used to monitor and diagnose arrhythmias that indicates an abnormal heart status. In this paper, we proposed 1-D convolutional neural network for arrhythmias classification systems. The proposed model consists of deep 11 layers which can learn to extract features and classify 5 types of arrhythmias. The simulation results over MIT-BIH arrhythmia database show that the learned neural network has more than 99% classification accuracy. It is analyzed that the more the number of convolutional kernels the network has, the more detailed characteristics of ECG signal resulted in better performance. Moreover, we implemented a practical application based on the proposed one to classify arrythmias in real-time.

최근 심전도 (ECG) 신호를 사용하여 심장병을 진단하는 많은 연구가 이루어지고 있다. 이러한 심전도 신호는 비정상적인 심장 상태를 나타내는 부정맥을 모니터링하고 진단하는 데 유용하게 쓰인다. 본 논문에서는 1차원 합성곱 신경망을 사용하여 ECG 신호에 대하여 부정맥을 분류하는 시스템을 제안한다. 제안하는 신경망 알고리즘은 부정맥 신호의 특징을 세밀하게 추출하도록 4개의 합성곱 계층으로 구성하고 매개변수를 최적화하도록 설계되었다. MIT-BIH 부정맥 데이터베이스에 대해 학습한 신경망은 시뮬레이션을 통해 99% 이상의 정확도의 분류 성능을 가진다는 것을 보여준다. 비교적 합성곱 커널의 개수가 많을수록 ECG 신호의 특성을 더 잘 나타내기 때문에 좋은 성능을 나타내는 것으로 분석되었다. 또한 제안된 신경망을 활용한 실제 시스템을 구현하여 실시간으로 부정맥을 분류하는 결과를 검증하였다.

Keywords

References

  1. S.W. Kim, and S.C. Shin, "Realization of a Wearable ECG Monitoring System for Mobile Healthcare," The Proceeding of the KIPS Fall Conference 2018, pp.453-456, 2018.
  2. O.T. Inan, L.G. Gregory, and T.A. Kovacs, "Robust Neural-Network-Based Classification of Premature Ventricular Contractions Using wavelet Transform and Timing Interval Features," IEEE Transaction on biomedical engineering, vol. 53, no. 12, pp. 2507-2512, Dec. 2006. https://doi.org/10.1109/TBME.2006.880879
  3. R.J. Martis, U. R. Acharya, and L.C. Min, "ECG beat classification using PCA, ILDA, ICA and Discrete Wavelet Transform," Biomedical Signal Processing and Control, vol. 8, pp. 437-448, 2013. https://doi.org/10.1016/j.bspc.2013.01.005
  4. V. Mondejar-Guerra, J. Novo, J. Rouco, M.G. Penedo, and M. Ortega, "Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers," Biomedical Signal Processing and Control, vol. 47, pp. 41-48, 2019. https://doi.org/10.1016/j.bspc.2018.08.007
  5. O.Yildirim, P. Plawiak, R-S Tan, and U. R. Acharya, "Arrhythmia detection using deep convolutional neural network with long duration ECG signals," Computers in Biology and Medicine, vol. 102, pp. 411-420, 2018. https://doi.org/10.1016/j.compbiomed.2018.09.009
  6. O.Yildrim, "A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification," Computers in Biology and Medicine, vol. 96, pp. 189-202, 2018. https://doi.org/10.1016/j.compbiomed.2018.03.016
  7. G. B. Moody, and R.G. Mark, "The impact of the MIT-BIH arrhythmia database," IEEE Eng. Med. Biol. Mag. vol. 20, pp. 45-50, 2001. https://doi.org/10.1109/51.932724
  8. Americal National Standards Institude, Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms, 2012.