DOI QR코드

DOI QR Code

A Regularization-direct Method to Numerically Solve First Kind Fredholm Integral Equation

  • Masouri, Zahra (Department of Mathematics, Islamshahr Branch, Islamic Azad University (IAU)) ;
  • Hatamzadeh, Saeed (Department of Electrical Engineering, Islamshahr Branch, Islamic Azad University (IAU))
  • Received : 2019.06.07
  • Accepted : 2020.05.30
  • Published : 2020.12.31

Abstract

Most first kind integral equations are ill-posed, and obtaining their numerical solution often requires solving a linear system of algebraic equations of large condition number, which may be difficult or impossible. This article proposes a regularization-direct method to numerically solve first kind Fredholm integral equations. The vector forms of block-pulse functions and related properties are applied to formulate the direct method and reduce the integral equation to a linear system of algebraic equations. We include a regularization scheme to overcome the ill-posedness of integral equation and obtain a stable numerical solution. Some test problems are solved using the proposed regularization-direct method to illustrate its efficiency for solving first kind Fredholm integral equations.

Keywords

References

  1. J. Caldwell, Numerical study of Fredholm integral equations, Int. J. Math. Edu. Sci. Tech., 25(1994), 831-836. https://doi.org/10.1080/0020739940250607
  2. A. Deb, G. Sarkar, M. Bhattacharjee, and S. K. Sen, All-integrator approach to linear SISO control system analysis using block pulse functions (BPF), J. Franklin Institute, 334B(2)(1997), 319-335.
  3. A. Deb, G. Sarkar, and S. K. Sen, Block pulse functions, the most fundamental of all piecewise constant basis functions, Internat. J. Systems Sci., 25(2)(1994), 351-363. https://doi.org/10.1080/00207729408928964
  4. L. M. Delves and J. L. Mohamed, Computational methods for integral equations, Cambridge University Press, Cambridge, 1985.
  5. W. A. Essah and L. M. Delves, The numerical solution of first kind integral equations, J. Comput. Appl. Math., 27(1989), 363-387. https://doi.org/10.1016/0377-0427(89)90023-X
  6. M. A. Golberg and C.-S. Chen, Discrete projection methods for integral equations, Computational Mechanics Publications, Southampton and Boston, 1997.
  7. C. W. Groetsch, The theory of Tikhonov regularization for Fredholm integral equations of the first kind, Pitman Advanced Publishing Program, Boston, 1984.
  8. P. C. Hansen, Numerical tools for analysis and solution of Fredholm integral equations of the first kind, Inverse Problems, 8(1992), 849-887. https://doi.org/10.1088/0266-5611/8/6/005
  9. S. Hatamzadeh-Varmazyar and Z. Masouri, Numerical method for analysis of one- and two-dimensional electromagnetic scattering based on using linear Fredholm integral equation models, Math. Comput. Modelling, 54(9)(2011), 2199-2210. https://doi.org/10.1016/j.mcm.2011.05.028
  10. Y. Hu, S. M. Schennach, and J.-L. Shiu, Injectivity of a class of integral operators with compactly supported kernels, J. Econometrics, 200(1)(2017), 48-58. https://doi.org/10.1016/j.jeconom.2017.05.013
  11. R. Kress, Linear integral equations, Springer-Verlag, Berlin, 1989.
  12. P. K. Kythe and P. Puri, Computational methods for linear integral equations, Birkhauser, Boston, 2002.
  13. M. M. Lavrentiev, Some improperly posed problems of mathematical physics, Springer-Verlag, New York, 1967.
  14. Z. Masouri, E. Babolian, and S. Hatamzadeh-Varmazyar, An expansion-iterative method for numerically solving Volterra integral equation of the first kind, Comput. Math. Appl., 59(4)(2010), 1491-1499. https://doi.org/10.1016/j.camwa.2009.11.004
  15. B. Neggal, N. Boussetila, and F. Rebbani, Projected Tikhonov regularization method for Fredholm integral equations of the first kind, J. Inequal. Appl., (2016), Paper No. 195, 21 pp.
  16. D. L. Phillips, A technique for the numerical solution of certain integral equations of the first kind, J. Assoc. Comput. Mach., 9(1962), 84-97. https://doi.org/10.1145/321105.321114
  17. C. P. Rao, Piecewise constant orthogonal functions and their application to systems and control, Springer, Berlin, 1983.
  18. M. T. Rashed, An expansion method to treat integral equations, Appl. Math. Comput., 135(2003), 65-72. https://doi.org/10.1016/S0096-3003(01)00311-3
  19. A. N. Tikhonov, On the solution of ill-posed problems and the method of regularization, Dokl. Akad. Nauk SSSR, 151(3)(1963), 501-504.
  20. A. N. Tikhonov, On the regularization of incorrectly posed problems, Dokl. Akad. Nauk SSSR, 153(1)(1963), 49-52
  21. A. N. Tikhonov and V. Y. Arsenin, Solutions of ill-posed problems, John Wiley & Sons, Washington D. C., 1977.
  22. S. Twomey, On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature, J. Assoc. Comput. Mach., 10(1963), 97-101. https://doi.org/10.1145/321150.321157
  23. A. M. Wazwaz, The regularization-homotopy method for the linear and non-linear Fredholm integral equations of the first kind, Commun. Numer. Anal., (2011), Art. ID cna-00105, 11 pp.
  24. F. Ziyaee and A. Tari, Regularization method for the two-dimensional Fredholm integral equations of the first kind, Int. J. Nonlinear Sci., 18(3)(2014), 189-194.