References
- J. Caldwell, Numerical study of Fredholm integral equations, Int. J. Math. Edu. Sci. Tech., 25(1994), 831-836. https://doi.org/10.1080/0020739940250607
- A. Deb, G. Sarkar, M. Bhattacharjee, and S. K. Sen, All-integrator approach to linear SISO control system analysis using block pulse functions (BPF), J. Franklin Institute, 334B(2)(1997), 319-335.
- A. Deb, G. Sarkar, and S. K. Sen, Block pulse functions, the most fundamental of all piecewise constant basis functions, Internat. J. Systems Sci., 25(2)(1994), 351-363. https://doi.org/10.1080/00207729408928964
- L. M. Delves and J. L. Mohamed, Computational methods for integral equations, Cambridge University Press, Cambridge, 1985.
- W. A. Essah and L. M. Delves, The numerical solution of first kind integral equations, J. Comput. Appl. Math., 27(1989), 363-387. https://doi.org/10.1016/0377-0427(89)90023-X
- M. A. Golberg and C.-S. Chen, Discrete projection methods for integral equations, Computational Mechanics Publications, Southampton and Boston, 1997.
- C. W. Groetsch, The theory of Tikhonov regularization for Fredholm integral equations of the first kind, Pitman Advanced Publishing Program, Boston, 1984.
- P. C. Hansen, Numerical tools for analysis and solution of Fredholm integral equations of the first kind, Inverse Problems, 8(1992), 849-887. https://doi.org/10.1088/0266-5611/8/6/005
- S. Hatamzadeh-Varmazyar and Z. Masouri, Numerical method for analysis of one- and two-dimensional electromagnetic scattering based on using linear Fredholm integral equation models, Math. Comput. Modelling, 54(9)(2011), 2199-2210. https://doi.org/10.1016/j.mcm.2011.05.028
- Y. Hu, S. M. Schennach, and J.-L. Shiu, Injectivity of a class of integral operators with compactly supported kernels, J. Econometrics, 200(1)(2017), 48-58. https://doi.org/10.1016/j.jeconom.2017.05.013
- R. Kress, Linear integral equations, Springer-Verlag, Berlin, 1989.
- P. K. Kythe and P. Puri, Computational methods for linear integral equations, Birkhauser, Boston, 2002.
- M. M. Lavrentiev, Some improperly posed problems of mathematical physics, Springer-Verlag, New York, 1967.
- Z. Masouri, E. Babolian, and S. Hatamzadeh-Varmazyar, An expansion-iterative method for numerically solving Volterra integral equation of the first kind, Comput. Math. Appl., 59(4)(2010), 1491-1499. https://doi.org/10.1016/j.camwa.2009.11.004
- B. Neggal, N. Boussetila, and F. Rebbani, Projected Tikhonov regularization method for Fredholm integral equations of the first kind, J. Inequal. Appl., (2016), Paper No. 195, 21 pp.
- D. L. Phillips, A technique for the numerical solution of certain integral equations of the first kind, J. Assoc. Comput. Mach., 9(1962), 84-97. https://doi.org/10.1145/321105.321114
- C. P. Rao, Piecewise constant orthogonal functions and their application to systems and control, Springer, Berlin, 1983.
- M. T. Rashed, An expansion method to treat integral equations, Appl. Math. Comput., 135(2003), 65-72. https://doi.org/10.1016/S0096-3003(01)00311-3
- A. N. Tikhonov, On the solution of ill-posed problems and the method of regularization, Dokl. Akad. Nauk SSSR, 151(3)(1963), 501-504.
- A. N. Tikhonov, On the regularization of incorrectly posed problems, Dokl. Akad. Nauk SSSR, 153(1)(1963), 49-52
- A. N. Tikhonov and V. Y. Arsenin, Solutions of ill-posed problems, John Wiley & Sons, Washington D. C., 1977.
- S. Twomey, On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature, J. Assoc. Comput. Mach., 10(1963), 97-101. https://doi.org/10.1145/321150.321157
- A. M. Wazwaz, The regularization-homotopy method for the linear and non-linear Fredholm integral equations of the first kind, Commun. Numer. Anal., (2011), Art. ID cna-00105, 11 pp.
- F. Ziyaee and A. Tari, Regularization method for the two-dimensional Fredholm integral equations of the first kind, Int. J. Nonlinear Sci., 18(3)(2014), 189-194.